BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11253823)

  • 1. Relationships between branchial chloride cells and gas transfer in freshwater fish.
    Perry SF
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):9-16. PubMed ID: 11253823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of soft-water acclimation on gill structure in the rainbow trout Oncorhynchus mykiss.
    Greco AM; Fenwick JC; Perry SF
    Cell Tissue Res; 1996 Jul; 285(1):75-82. PubMed ID: 8766860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The chloride cell: structure and function in the gills of freshwater fishes.
    Perry SF
    Annu Rev Physiol; 1997; 59():325-47. PubMed ID: 9074767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion exchanges through respiratory and chloride cells in freshwater- and seawater-adapted teleosteans.
    Girard JP; Payan P
    Am J Physiol; 1980 Mar; 238(3):R260-8. PubMed ID: 6989274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion-deficient environment induces the expression of basolateral chloride channel, ClC-3-like protein, in gill mitochondrion-rich cells for chloride uptake of the tilapia Oreochromis mossambicus.
    Tang CH; Lee TH
    Physiol Biochem Zool; 2011; 84(1):54-67. PubMed ID: 21091354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Branchial gas transfer models.
    Püper J
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):125-30. PubMed ID: 11253776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FINE STRUCTURE OF CHLORIDE CELLS FROM THREE SPECIES OF FUNDULUS.
    PHILPOTT CW; COPELAND DE
    J Cell Biol; 1963 Aug; 18(2):389-404. PubMed ID: 14079496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Appearance of cuboidal cells in relation to salinity in gills of Fundulus heteroclitus, a species exhibiting branchial Na+ but not Cl- uptake in freshwater.
    Laurent P; Chevalier C; Wood CM
    Cell Tissue Res; 2006 Sep; 325(3):481-92. PubMed ID: 16639617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell signaling and ion transport across the fish gill epithelium.
    Evans DH
    J Exp Zool; 2002 Aug; 293(3):336-47. PubMed ID: 12115905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive and active transport properties of a gill model, the cultured branchial epithelium of the freshwater rainbow trout (Oncorhynchus mykiss).
    Wood CM; Gilmour KM; Pärt P
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Jan; 119(1):87-96. PubMed ID: 11253822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of hypoxia on gill morphology and ionoregulatory status in the Lake Qinghai scaleless carp, Gymnocypris przewalskii.
    Matey V; Richards JG; Wang Y; Wood CM; Rogers J; Davies R; Murray BW; Chen XQ; Du J; Brauner CJ
    J Exp Biol; 2008 Apr; 211(Pt 7):1063-74. PubMed ID: 18344480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the morphology of the gills of an extreme alkalinity and hyperosmotic adapted teleost Oreochromis alcalicus grahami (Boulenger) with particular emphasis on the ultrastructure of the chloride cells and their modifications with water dilution. A SEM and TEM study.
    Maina JN
    Anat Embryol (Berl); 1990; 181(1):83-98. PubMed ID: 2305972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloride cell responses to ion challenge in two tropical freshwater fish, the erythrinids Hoplias malabaricus and Hoplerythrinus unitaeniatus.
    Moron SE; Oba ET; De Andrade CA; Fernandes MN
    J Exp Zool A Comp Exp Biol; 2003 Aug; 298(2):93-104. PubMed ID: 12884271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Is Cl- protection against silver toxicity due to chemical speciation?
    Bielmyer GK; Brix KV; Grosell M
    Aquat Toxicol; 2008 Apr; 87(2):81-7. PubMed ID: 18304659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gill cellular changes induced by copper exposure in the South American tropical freshwater fish Prochilodus scrofa.
    Mazon AF; Cerqueira CC; Fernandes MN
    Environ Res; 2002 Jan; 88(1):52-63. PubMed ID: 11896669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of mitochondria-rich cells in the gills of air-breathing fishes.
    Lin HC; Sung WT
    Physiol Biochem Zool; 2003; 76(2):215-28. PubMed ID: 12794675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon?
    Tresguerres M; Katoh F; Orr E; Parks SK; Goss GG
    Physiol Biochem Zool; 2006; 79(6):981-96. PubMed ID: 17041864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultured gill epithelia as models for the freshwater fish gill.
    Wood CM; Kelly SP; Zhou B; Fletcher M; O'Donnell M; Eletti B; Pärt P
    Biochim Biophys Acta; 2002 Nov; 1566(1-2):72-83. PubMed ID: 12421539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss).
    Ivanis G; Esbaugh AJ; Perry SF
    J Exp Biol; 2008 Aug; 211(Pt 15):2467-77. PubMed ID: 18626081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar.
    Hiroi J; McCormick SD
    J Exp Biol; 2007 Mar; 210(Pt 6):1015-24. PubMed ID: 17337714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.