These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 11254178)

  • 1. Tissue and intracellular distribution of rhodanese and mercaptopyruvate sulphurtransferase in ruminants and birds.
    Al-Qarawi AA; Mousa HM; Ali BH
    Vet Res; 2001; 32(1):63-70. PubMed ID: 11254178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The activity of avian rhodanese.
    Oh SY; Jalaludin S; Davis RH; Sykes AH
    Br Poult Sci; 1977 Jul; 18(4):385-9. PubMed ID: 890521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative studies on the distribution of rhodanese and beta-mercaptopyruvate sulfurtransferase in different organs of sheep (Ovis aries) and cattle (Bos taurus).
    Aminlari M; Gilanpour H; Taghavianpour H; Veseghi T
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 92(2):259-62. PubMed ID: 2565183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercaptopyruvate sulfurtransferase as a defense against cyanide toxication: molecular properties and mode of detoxification.
    Nagahara N; Ito T; Minami M
    Histol Histopathol; 1999 Oct; 14(4):1277-86. PubMed ID: 10506943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhodanese activity in different tissues of the ostrich.
    Eskandarzade N; Aminlari M; Golami S; Tavana M
    Br Poult Sci; 2012; 53(2):270-3. PubMed ID: 22646793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3-mercaptopyruvate sulphurtransferase and rhodanese activities in the developing chick embryo.
    Frendo J; Dudek M
    Folia Biol (Krakow); 1978; 26(3):209-15. PubMed ID: 720691
    [No Abstract]   [Full Text] [Related]  

  • 7. The effect of cAMP and some sulphur compounds upon the activity of mercaptopyruvate sulphurtransferase and rhodanese in mouse liver.
    Wróbel M; Frendo J
    Folia Biol (Krakow); 1992; 40(1-2):11-4. PubMed ID: 1333420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative studies on the distribution of rhodanese in different tissues of domestic animals.
    Aminlari M; Gilanpour H
    Comp Biochem Physiol B; 1991; 99(3):673-7. PubMed ID: 1769215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis.
    Nagahara N; Okazaki T; Nishino T
    J Biol Chem; 1995 Jul; 270(27):16230-5. PubMed ID: 7608189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction of rhodanese with dithiothreitol.
    Pecci L; Pensa B; Costa M; Cignini PL; Cannella C
    Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional and subcellular distribution of cyanide metabolizing enzymes in the central nervous system.
    Mimori Y; Nakamura S; Kameyama M
    J Neurochem; 1984 Aug; 43(2):540-5. PubMed ID: 6588145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of sulfurtransferase enzymes in Azotobacter vinelandii.
    Pagani S; Franchi E; Colnaghi R; Kennedy C
    FEBS Lett; 1991 Jan; 278(2):151-4. PubMed ID: 1991505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interspecies differences in rhodanese (thiosulfate sulfurtransferase, EC 2.8.1.1) activity in liver, kidney and plasma.
    Drawbaugh RB; Marrs TC
    Comp Biochem Physiol B; 1987; 86(2):307-10. PubMed ID: 3105953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of 2-substituted thiazolidine-4(R)-carboxylic acids on non-protein sulphydryl levels and sulphurtransferase activities in mouse liver and brain.
    Włodek L; Radomski J; Wróbel M
    Biochem Pharmacol; 1993 Jul; 46(1):190-3. PubMed ID: 8347132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histochemical detection of thiosulphate sulphurtransferase (rhodanese) activity.
    Tanka D; Gátai K
    Histochemistry; 1983; 77(2):285-8. PubMed ID: 6573305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodanese from Thiobacillus A2: catalysis of reactions of thiosulphate with dihydrolipoate and dihydrolipoamide.
    Silver M; Kelly DP
    J Gen Microbiol; 1976 Dec; 97(2):277-84. PubMed ID: 13142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reexamination of the postulated charge transfer interactions at the active site of the enzyme rhodanese.
    Baillie RD; Horowitz PM
    Biochim Biophys Acta; 1976 Apr; 429(2):402-8. PubMed ID: 130934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of rhodanese with mitochondrial NADH dehydrogenase.
    Pagani S; Galante YM
    Biochim Biophys Acta; 1983 Jan; 742(2):278-84. PubMed ID: 6402020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical localization of rhodanese.
    Sylvester M; Sander C
    Histochem J; 1990 Apr; 22(4):197-200. PubMed ID: 2387754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodanese (thiosulfate:cyanide sulfurtransferase) distribution in the digestive tract of chicken.
    Aminlari M; Shahbazi M
    Poult Sci; 1994 Sep; 73(9):1465-9. PubMed ID: 7800649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.