BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11254314)

  • 1. Incorporation of CdS Nanoparticles Formed in Reverse Micelles into Mesoporous Silica.
    Hirai T; Okubo H; Komasawa I
    J Colloid Interface Sci; 2001 Mar; 235(2):358-364. PubMed ID: 11254314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of CdS nanoparticles formed in reverse micelles onto aluminosilicate supports and their photocatalytic properties.
    Hirai T; Bando Y
    J Colloid Interface Sci; 2005 Aug; 288(2):513-6. PubMed ID: 15927620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dithiol-mediated immobilization of CdS nanoparticles from reverse micellar system onto Zn-doped silica particles and their high photocatalytic activity.
    Hirai T; Nanba M; Komasawa I
    J Colloid Interface Sci; 2002 Aug; 252(1):89-92. PubMed ID: 16290766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dithiol-mediated incorporation of CdS nanoparticles from reverse micellar system into Zn-doped SBA-15 mesoporous silica and their photocatalytic properties.
    Hirai T; Nanba M; Komasawa I
    J Colloid Interface Sci; 2003 Dec; 268(2):394-9. PubMed ID: 14643239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media.
    Pérez-Quintanilla D; del Hierro I; Fajardo M; Sierra I
    J Hazard Mater; 2006 Jun; 134(1-3):245-56. PubMed ID: 16326000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titania nanoparticles synthesis in mesoporous molecular sieve MCM-41.
    Lihitkar NB; Abyaneh MK; Samuel V; Pasricha R; Gosavi SW; Kulkarni SK
    J Colloid Interface Sci; 2007 Oct; 314(1):310-6. PubMed ID: 17586518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Experimental Study on the Relationship between the Physical Properties of CTAB/Hexanol/Water Reverse Micelles and ZrO2-Y2O3 Nanoparticles Prepared.
    Fang X; Yang C
    J Colloid Interface Sci; 1999 Apr; 212(2):242-251. PubMed ID: 10092352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of Y2O3:Eu3+ nanoparticles in reverse micellar systems and their photoluminescence properties.
    Hirai T; Asada Y; Komasawa I
    J Colloid Interface Sci; 2004 Aug; 276(2):339-45. PubMed ID: 15271561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 13C NMR characterization of the organic constituents in ligand-modified hexagonal mesoporous silicas: media for the synthesis of small, uniform-size gold nanoparticles.
    Hagaman EW; Zhu H; Overbury SH; Dai S
    Langmuir; 2004 Oct; 20(22):9577-84. PubMed ID: 15491189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticles of mesoporous SO3H-functionalized Si-MCM-41 with superior proton conductivity.
    Marschall R; Bannat I; Feldhoff A; Wang L; Lu GQ; Wark M
    Small; 2009 Apr; 5(7):854-9. PubMed ID: 19226596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enrichment of phosphopeptides by Fe3+-immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC-MS/MS analysis.
    Pan C; Ye M; Liu Y; Feng S; Jiang X; Han G; Zhu J; Zou H
    J Proteome Res; 2006 Nov; 5(11):3114-24. PubMed ID: 17081063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated oxidation of epinephrine by silica nanoparticles.
    Tao Z; Wang G; Goodisman J; Asefa T
    Langmuir; 2009 Sep; 25(17):10183-8. PubMed ID: 19466813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast enzyme immobilization over large-pore nanoscale mesoporous silica particles.
    Sun J; Zhang H; Tian R; Ma D; Bao X; Su DS; Zou H
    Chem Commun (Camb); 2006 Mar; (12):1322-4. PubMed ID: 16538261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization of the thermodynamically favored polymorph of cadmium chalcogenide nanoparticles CdX (X = S, Se, Te) in the polar mesopores of SBA-15 silica.
    Yosef M; Schaper AK; Fröba M; Schlecht S
    Inorg Chem; 2005 Aug; 44(16):5890-6. PubMed ID: 16060644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-step surface modification approach for Au and CdS NPs loaded mesoporous thin films and the greatly enhanced optical nonlinearity.
    Qin F; Yu C; Li J; Wei C; Gu J; Shi J
    Dalton Trans; 2010 Apr; 39(13):3233-8. PubMed ID: 20449452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rigid nanoscopic containers for highly dispersed, stable metal and bimetal nanoparticles with both size and site control.
    Wang C; Zhu G; Li J; Cai X; Wei Y; Zhang D; Qiu S
    Chemistry; 2005 Aug; 11(17):4975-82. PubMed ID: 15973750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics.
    Datta A; Priyam A; Bhattacharyya SN; Mukherjea KK; Saha A
    J Colloid Interface Sci; 2008 Jun; 322(1):128-35. PubMed ID: 18359487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of 2-mercaptobenzothiazole-derivatized mesoporous silica and removal of Hg(ii) from aqueous solution.
    Pérez-Quintanilla D; Del Hierro I; Fajardo M; Sierra I
    J Environ Monit; 2006 Jan; 8(1):214-22. PubMed ID: 16395482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of ZnS/CdS composite nanoparticles by coprecipitation from reverse micelles using CO2 as antisolvent.
    Zhang J; Xiao M; Liu Z; Han B; Jiang T; He J; Yang G
    J Colloid Interface Sci; 2004 May; 273(1):160-4. PubMed ID: 15051446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The preparation of size-controlled functionalized polymeric nanoparticles in micelles.
    Vakurov A; Pchelintsev NA; Forde J; O'Fágáin C; Gibson T; Millner P
    Nanotechnology; 2009 Jul; 20(29):295605. PubMed ID: 19567946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.