BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 11254385)

  • 1. Structure and functionality of a designed p53 dimer.
    Davison TS; Nie X; Ma W; Lin Y; Kay C; Benchimol S; Arrowsmith CH
    J Mol Biol; 2001 Mar; 307(2):605-17. PubMed ID: 11254385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A meanfield approach to the thermodynamics of a protein-solvent system with application to the oligomerization of the tumor suppressor p53.
    Noolandi J; Davison TS; Volkel AR; Nie X; Kay C; Arrowsmith CH
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9955-60. PubMed ID: 10944184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure.
    Nomura T; Kamada R; Ito I; Chuman Y; Shimohigashi Y; Sakaguchi K
    Biopolymers; 2009 Jan; 91(1):78-84. PubMed ID: 18781628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability.
    Poon GM; Brokx RD; Sung M; Gariépy J
    J Mol Biol; 2007 Jan; 365(4):1217-31. PubMed ID: 17113101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function.
    Lubin DJ; Butler JS; Loh SN
    J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latent and active p53 are identical in conformation.
    Ayed A; Mulder FA; Yi GS; Lu Y; Kay LE; Arrowsmith CH
    Nat Struct Biol; 2001 Sep; 8(9):756-60. PubMed ID: 11524676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligomerization of p53 is necessary to inhibit its transcriptional transactivation property at high protein concentration.
    Kristjuhan A; Jaks V; Rimm I; Tooming T; Maimets T
    Oncogene; 1998 May; 16(18):2413-8. PubMed ID: 9620560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Change in oligomerization specificity of the p53 tetramerization domain by hydrophobic amino acid substitutions.
    Stavridi ES; Chehab NH; Caruso LC; Halazonetis TD
    Protein Sci; 1999 Sep; 8(9):1773-9. PubMed ID: 10493578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome.
    Davison TS; Yin P; Nie E; Kay C; Arrowsmith CH
    Oncogene; 1998 Aug; 17(5):651-6. PubMed ID: 9704931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy.
    Bullock AN; Henckel J; Fersht AR
    Oncogene; 2000 Mar; 19(10):1245-56. PubMed ID: 10713666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain.
    Mateu MG; Fersht AR
    EMBO J; 1998 May; 17(10):2748-58. PubMed ID: 9582268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of folding and assembly of a small tetrameric protein domain from tumor suppressor p53.
    Mateu MG; Sánchez Del Pino MM; Fersht AR
    Nat Struct Biol; 1999 Feb; 6(2):191-8. PubMed ID: 10048932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization of the p53 oligomerization domain: identification of a folding nucleus by molecular dynamics simulations.
    Chong LT; Snow CD; Rhee YM; Pande VS
    J Mol Biol; 2005 Jan; 345(4):869-78. PubMed ID: 15588832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat.
    Gabizon R; Mor M; Rosenberg MM; Britan L; Hayouka Z; Kotler M; Shalev DE; Friedler A
    Biopolymers; 2008; 90(2):105-16. PubMed ID: 18189286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a function-specific mutation of clathrin heavy chain (CHC) required for p53 transactivation.
    Ohata H; Ota N; Shirouzu M; Yokoyama S; Yokota J; Taya Y; Enari M
    J Mol Biol; 2009 Dec; 394(3):460-71. PubMed ID: 19766654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p53 mutants can often transactivate promoters containing a p21 but not Bax or PIG3 responsive elements.
    Campomenosi P; Monti P; Aprile A; Abbondandolo A; Frebourg T; Gold B; Crook T; Inga A; Resnick MA; Iggo R; Fronza G
    Oncogene; 2001 Jun; 20(27):3573-9. PubMed ID: 11429705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of oligomeric stability by covalent linkage and its application to the human p53tet domain: thermodynamics and biological implications.
    Poon GM
    Biochem Soc Trans; 2007 Dec; 35(Pt 6):1574-8. PubMed ID: 18031269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 7-amino-acid site in the proline-rich region of the N-terminal domain of p53 is involved in the interaction with FAK and is critical for p53 functioning.
    Golubovskaya VM; Finch R; Zheng M; Kurenova EV; Cance WG
    Biochem J; 2008 Apr; 411(1):151-60. PubMed ID: 18215142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.