BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 11254389)

  • 1. An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (Antigen 85B), a mycolyl transferase.
    Anderson DH; Harth G; Horwitz MA; Eisenberg D
    J Mol Biol; 2001 Mar; 307(2):671-81. PubMed ID: 11254389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design, synthesis and biological evaluation of sugar-derived esters, alpha-ketoesters and alpha-ketoamides as inhibitors for Mycobacterium tuberculosis antigen 85C.
    Sanki AK; Boucau J; Umesiri FE; Ronning DR; Sucheck SJ
    Mol Biosyst; 2009 Sep; 5(9):945-56. PubMed ID: 19668859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines.
    Ronning DR; Klabunde T; Besra GS; Vissa VD; Belisle JT; Sacchettini JC
    Nat Struct Biol; 2000 Feb; 7(2):141-6. PubMed ID: 10655617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mycolyltransferase 85A, a putative drug target of Mycobacterium tuberculosis: development of a novel assay and quantification of glycolipid-status of the mycobacterial cell wall.
    Elamin AA; Stehr M; Oehlmann W; Singh M
    J Microbiol Methods; 2009 Dec; 79(3):358-63. PubMed ID: 19857528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Another brick in the wall.
    Tonge PJ
    Nat Struct Biol; 2000 Feb; 7(2):94-6. PubMed ID: 10655605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational screening for new inhibitors of M. tuberculosis mycolyltransferases antigen 85 group of proteins as potential drug targets.
    Gahoi S; Mandal RS; Ivanisenko N; Shrivastava P; Jain S; Singh AK; Raghunandanan MV; Kanchan S; Taneja B; Mandal C; Ivanisenko VA; Kumar A; Kumar R; ; Ramachandran S
    J Biomol Struct Dyn; 2013; 31(1):30-43. PubMed ID: 22804492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mycolyltransferase from Mycobacterium leprae excludes mycolate-containing glycolipid substrates.
    Nakao H; Matsunaga I; Morita D; Aboshi T; Harada T; Nakagawa Y; Mori N; Sugita M
    J Biochem; 2009 Nov; 146(5):659-65. PubMed ID: 19628675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphonate inhibitors of antigen 85C, a crucial enzyme involved in the biosynthesis of the Mycobacterium tuberculosis cell wall.
    Gobec S; Plantan I; Mravljak J; Wilson RA; Besra GS; Kikelj D
    Bioorg Med Chem Lett; 2004 Jul; 14(13):3559-62. PubMed ID: 15177473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The three Mycobacterium tuberculosis antigen 85 isoforms have unique substrates and activities determined by non-active site regions.
    Backus KM; Dolan MA; Barry CS; Joe M; McPhie P; Boshoff HI; Lowary TL; Davis BG; Barry CE
    J Biol Chem; 2014 Sep; 289(36):25041-53. PubMed ID: 25028517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium tuberculosis antigen 85A and 85C structures confirm binding orientation and conserved substrate specificity.
    Ronning DR; Vissa V; Besra GS; Belisle JT; Sacchettini JC
    J Biol Chem; 2004 Aug; 279(35):36771-7. PubMed ID: 15192106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: binding mode of a new class of purinetrione inhibitors.
    Morgunova E; Meining W; Illarionov B; Haase I; Jin G; Bacher A; Cushman M; Fischer M; Ladenstein R
    Biochemistry; 2005 Mar; 44(8):2746-58. PubMed ID: 15723519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The three-dimensional structure of N-succinyldiaminopimelate aminotransferase from Mycobacterium tuberculosis.
    Weyand S; Kefala G; Weiss MS
    J Mol Biol; 2007 Mar; 367(3):825-38. PubMed ID: 17292400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis.
    Takayama K; Wang C; Besra GS
    Clin Microbiol Rev; 2005 Jan; 18(1):81-101. PubMed ID: 15653820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85.
    Puech V; Bayan N; Salim K; Leblon G; Daffé M
    Mol Microbiol; 2000 Mar; 35(5):1026-41. PubMed ID: 10712685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Distribution of antigenic glycolipids among Mycobacterium tuberculosis strains and their contribution to virulence].
    Fujiwara N
    Kekkaku; 1997 Apr; 72(4):193-205. PubMed ID: 9145649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New lipophilic phthalimido- and 3-phenoxybenzyl sulfonates: inhibition of antigen 85C mycolyltransferase activity and cytotoxicity.
    Kovac A; Wilson RA; Besra GS; Filipic M; Kikelj D; Gobec S
    J Enzyme Inhib Med Chem; 2006 Aug; 21(4):391-7. PubMed ID: 17059171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of recombinant bacille Calmette-Guérin vaccine secreting interleukin-15/antigen 85B fusion protein in providing protection against Mycobacterium tuberculosis.
    Tang C; Yamada H; Shibata K; Maeda N; Yoshida S; Wajjwalku W; Ohara N; Yamada T; Kinoshita T; Yoshikai Y
    J Infect Dis; 2008 May; 197(9):1263-74. PubMed ID: 18422438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, synthesis, and X-ray analysis of a glycoconjugate bound to Mycobacterium tuberculosis antigen 85C.
    Ibrahim DA; Boucau J; Lajiness DH; Veleti SK; Trabbic KR; Adams SS; Ronning DR; Sucheck SJ
    Bioconjug Chem; 2012 Dec; 23(12):2403-16. PubMed ID: 23190459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis.
    Belisle JT; Vissa VD; Sievert T; Takayama K; Brennan PJ; Besra GS
    Science; 1997 May; 276(5317):1420-2. PubMed ID: 9162010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylation of trehalose mycolates is required for efficient MmpL-mediated membrane transport in Corynebacterineae.
    Yamaryo-Botte Y; Rainczuk AK; Lea-Smith DJ; Brammananth R; van der Peet PL; Meikle P; Ralton JE; Rupasinghe TW; Williams SJ; Coppel RL; Crellin PK; McConville MJ
    ACS Chem Biol; 2015 Mar; 10(3):734-46. PubMed ID: 25427102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.