BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 11254397)

  • 1. Endothelial K(ca) channels mediate flow-dependent dilation of arterioles of skeletal muscle and mesentery.
    Sun D; Huang A; Koller A; Kaley G
    Microvasc Res; 2001 Mar; 61(2):179-86. PubMed ID: 11254397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mediation of EDHF-induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6-EET, and gap junctions.
    Ungvari Z; Koller A
    Microcirculation; 2001 Aug; 8(4):265-74. PubMed ID: 11528534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress.
    Bagi Z; Frangos JA; Yeh JC; White CR; Kaley G; Koller A
    Arterioscler Thromb Vasc Biol; 2005 Aug; 25(8):1590-5. PubMed ID: 15890968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-dependent vasodilation in myogenically active mouse skeletal muscle arterioles: role of EDH and K(+) channels.
    Potocnik SJ; McSherry I; Ding H; Murphy TV; Kotecha N; Dora KA; Yuill KH; Triggle CR; Hill MA
    Microcirculation; 2009 Jul; 16(5):377-90; 1 p following 390. PubMed ID: 19424929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel.
    Si H; Heyken WT; Wölfle SE; Tysiac M; Schubert R; Grgic I; Vilianovich L; Giebing G; Maier T; Gross V; Bader M; de Wit C; Hoyer J; Köhler R
    Circ Res; 2006 Sep; 99(5):537-44. PubMed ID: 16873714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of flow-induced dilation of arterioles to daily exercise.
    Sun D; Huang A; Koller A; Kaley G
    Microvasc Res; 1998 Jul; 56(1):54-61. PubMed ID: 9683563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial microtubule disruption blocks flow-dependent dilation of arterioles.
    Sun D; Huang A; Sharma S; Koller A; Kaley G
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H2087-93. PubMed ID: 11299210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A role for heterocellular coupling and EETs in dilation of rat cremaster arteries.
    McSherry IN; Sandow SL; Campbell WB; Falck JR; Hill MA; Dora KA
    Microcirculation; 2006 Mar; 13(2):119-30. PubMed ID: 16459325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The levosimendan metabolite OR-1896 elicits vasodilation by activating the K(ATP) and BK(Ca) channels in rat isolated arterioles.
    Erdei N; Papp Z; Pollesello P; Edes I; Bagi Z
    Br J Pharmacol; 2006 Jul; 148(5):696-702. PubMed ID: 16715115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased arteriolar sensitivity to shear stress in adult rats is reversed by chronic exercise activity.
    Sun D; Huang A; Koller A; Kaley G
    Microcirculation; 2002 Apr; 9(2):91-7. PubMed ID: 11932776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increases in endothelial Ca(2+) activate K(Ca) channels and elicit EDHF-type arteriolar dilation via gap junctions.
    Ungvari Z; Csiszar A; Koller A
    Am J Physiol Heart Circ Physiol; 2002 May; 282(5):H1760-7. PubMed ID: 11959641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothelial cell calcium and vascular control.
    Falcone JC
    Med Sci Sports Exerc; 1995 Aug; 27(8):1165-9. PubMed ID: 7476061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro.
    Koller A; Sun D; Kaley G
    Circ Res; 1993 Jun; 72(6):1276-84. PubMed ID: 8495555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corelease of nitric oxide and prostaglandins mediates flow-dependent dilation of rat gracilis muscle arterioles.
    Koller A; Sun D; Huang A; Kaley G
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H326-32. PubMed ID: 8048598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo.
    Siegl D; Koeppen M; Wölfle SE; Pohl U; de Wit C
    Circ Res; 2005 Oct; 97(8):781-8. PubMed ID: 16166558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prominent role of KCa3.1 in endothelium-derived hyperpolarizing factor-type dilations and conducted responses in the microcirculation in vivo.
    Wölfle SE; Schmidt VJ; Hoyer J; Köhler R; de Wit C
    Cardiovasc Res; 2009 Jun; 82(3):476-83. PubMed ID: 19218287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biphasic effect of hydrogen peroxide on skeletal muscle arteriolar tone via activation of endothelial and smooth muscle signaling pathways.
    Cseko C; Bagi Z; Koller A
    J Appl Physiol (1985); 2004 Sep; 97(3):1130-7. PubMed ID: 15208297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial ATP-sensitive potassium channels mediate coronary microvascular dilation to hyperosmolarity.
    Ishizaka H; Kuo L
    Am J Physiol; 1997 Jul; 273(1 Pt 2):H104-12. PubMed ID: 9249480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels.
    Hein TW; Xu W; Kuo L
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):693-9. PubMed ID: 16431969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.