These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1125449)

  • 41. Natural and anthropogenic hydrocarbon inputs to sediments of Patos Lagoon Estuary, Brazil.
    Medeiros PM; Bícego MC; Castelao RM; Del Rosso C; Fillmann G; Zamboni AJ
    Environ Int; 2005 Jan; 31(1):77-87. PubMed ID: 15607781
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Assessment of soil pollution based on total petroleum hydrocarbons and individual oil substances.
    Pinedo J; Ibáñez R; Lijzen JP; Irabien Á
    J Environ Manage; 2013 Nov; 130():72-9. PubMed ID: 24064142
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of petroleum hydrocarbons from aqueous solution using sugarcane bagasse as adsorbent.
    Brandão PC; Souza TC; Ferreira CA; Hori CE; Romanielo LL
    J Hazard Mater; 2010 Mar; 175(1-3):1106-12. PubMed ID: 19932555
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Degradation and mineralization of petroleum by two bacteria isolated from coastal waters.
    Atlas RM; Bartha R
    Biotechnol Bioeng; 1972 May; 14(3):297-308. PubMed ID: 5029876
    [No Abstract]   [Full Text] [Related]  

  • 45. Composition and depth distribution of hydrocarbons in Barataria Bay marsh sediments after the Deepwater Horizon oil spill.
    Dincer Kırman Z; Sericano JL; Wade TL; Bianchi TS; Marcantonio F; Kolker AS
    Environ Pollut; 2016 Jul; 214():101-113. PubMed ID: 27064616
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH's) using Avicennia schaueriana.
    Moreira IT; Oliveira OM; Triguis JA; Queiroz AF; Ferreira SL; Martins CM; Silva AC; Falcão BA
    Mar Pollut Bull; 2013 Feb; 67(1-2):130-6. PubMed ID: 23228519
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative studies on marine biodegradation of oil. I. Nutrient limitation at 14 degrees C.
    Gibbs CF
    Proc R Soc Lond B Biol Sci; 1975 Jan; 188(1090):61-82. PubMed ID: 234618
    [No Abstract]   [Full Text] [Related]  

  • 48. Petroleum-related hydrocarbons in deep and subsurface sediments from South-Western Barents Sea.
    Boitsov S; Petrova V; Jensen HK; Kursheva A; Litvinenko I; Chen Y; Klungsøyr J
    Mar Environ Res; 2011 Jun; 71(5):357-68. PubMed ID: 21601919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Biological toxicity effect of petroleum contaminated soil before and after physicochemical remediation].
    Lian JY; Ha Y; Huang L; Ju Y; Shi S; Liu L; Zhang RL; Sui H; Li XG
    Huan Jing Ke Xue; 2011 Mar; 32(3):870-4. PubMed ID: 21634190
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Advective pore-water transport of hydrocarbons in North East Scotland coastal sands.
    Perez Calderon LJ; Vossen K; Potts LD; Gallego A; Anderson JA; Witte U
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28445-28459. PubMed ID: 30088245
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume.
    Kao CM; Chen CS; Tsa FY; Yang KH; Chien CC; Liang SH; Yang CA; Chen SC
    J Hazard Mater; 2010 Jun; 178(1-3):409-16. PubMed ID: 20185233
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced removal of sediment-associated total petroleum hydrocarbons under bioturbation by polychaete perinereis aibuhitensis.
    Tong Y; Li J; Cheng Q; Gao C; Yang Y; Tian S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(5):391-397. PubMed ID: 30686094
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distribution of hydrocarbons in seabed sediments derived from tsunami-spilled oil in Kesennuma Bay, Japan.
    Nakamura M; Ikeda Y; Matsumoto A; Maki H; Arakawa H
    Mar Pollut Bull; 2018 Mar; 128():115-125. PubMed ID: 29571354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Application of enhanced gas chromatography/triple quadrupole mass spectrometry for monitoring petroleum weathering and forensic source fingerprinting in samples impacted by the Deepwater Horizon oil spill.
    Adhikari PL; Wong RL; Overton EB
    Chemosphere; 2017 Oct; 184():939-950. PubMed ID: 28655113
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA.
    Cowie BR; Greenberg BM; Slater GF
    Environ Sci Technol; 2010 Apr; 44(7):2322-7. PubMed ID: 20196610
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatial distribution and composition of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and hopanes in superficial sediments of the coral reefs of the Persian Gulf, Iran.
    Ranjbar Jafarabadi A; Riyahi Bakhtiari A; Aliabadian M; Shadmehri Toosi A
    Environ Pollut; 2017 May; 224():195-223. PubMed ID: 28216134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Industrial hygiene in obtaining aromatic hydrocarbons from petroleum crude].
    Boĭko VI
    Gig Tr Prof Zabol; 1980 Nov; (11):5-8. PubMed ID: 6449412
    [No Abstract]   [Full Text] [Related]  

  • 58. Occurrence and distribution of monocyclic aromatic hydrocarbons (BTEX) and the impact on macrobenthic community structure in Lagos lagoon, Nigeria.
    Doherty VF; Otitoloju AA
    Environ Monit Assess; 2016 Oct; 188(10):571. PubMed ID: 27640166
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-performance liquid chromatography fractionation using a silver-modified column followed by two-dimensional comprehensive gas chromatography for detailed group-type characterization of oils and oil pollutions.
    Mao D; Van De Weghe H; Diels L; De Brucker N; Lookman R; Vanermen G
    J Chromatogr A; 2008 Jan; 1179(1):33-40. PubMed ID: 17959191
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Removal of non-aqueous phase liquids (NAPLs) from TPH-saturated sandy aquifer sediments using in situ air sparging combined with soil vapor extraction.
    Lee JH; Woo HJ; Jeong KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(14):1253-1266. PubMed ID: 30623720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.