These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 11254668)

  • 1. Mutation in pre-mRNA adenosine deaminase markedly attenuates neuronal tolerance to O2 deprivation in Drosophila melanogaster.
    Ma E; Gu XQ; Wu X; Xu T; Haddad GG
    J Clin Invest; 2001 Mar; 107(6):685-93. PubMed ID: 11254668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing.
    Palladino MJ; Keegan LP; O'Connell MA; Reenan RA
    RNA; 2000 Jul; 6(7):1004-18. PubMed ID: 10917596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene regulation by O2 deprivation: an anoxia-regulated novel gene in Drosophila melanogaster.
    Ma E; Xu T; Haddad GG
    Brain Res Mol Brain Res; 1999 Jan; 63(2):217-24. PubMed ID: 9878744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of new targets of Drosophila pre-mRNA adenosine deaminase.
    Xia S; Yang J; Su Y; Qian J; Ma E; Haddad GG
    Physiol Genomics; 2005 Jan; 20(2):195-202. PubMed ID: 15522950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulatory role of dADAR in ROS metabolism in Drosophila CNS.
    Chen L; Rio DC; Haddad GG; Ma E
    Brain Res Mol Brain Res; 2004 Nov; 131(1-2):93-100. PubMed ID: 15530657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms underlying hypoxia tolerance in Drosophila melanogaster: hairy as a metabolic switch.
    Zhou D; Xue J; Lai JC; Schork NJ; White KP; Haddad GG
    PLoS Genet; 2008 Oct; 4(10):e1000221. PubMed ID: 18927626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic basis of tolerance to O2 deprivation in Drosophila melanogaster.
    Haddad GG; Sun Ya; Wyman RJ; Xu T
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):10809-12. PubMed ID: 9380715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA editing in Drosophila melanogaster: New targets and functional consequences.
    Stapleton M; Carlson JW; Celniker SE
    RNA; 2006 Nov; 12(11):1922-32. PubMed ID: 17018572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal tolerance to O2 deprivation in drosophila: novel approaches using genetic models.
    Haddad GG; Ma E
    Neuroscientist; 2001 Dec; 7(6):538-50. PubMed ID: 11765131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal expression of dADAR mRNA and protein isoforms during embryogenesis in Drosophila melanogaster.
    Chen J; Lakshmi GG; Hays DL; McDowell KM; Ma E; Vaughn JC
    Differentiation; 2009 Dec; 78(5):312-20. PubMed ID: 19720447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Drosophila CDK5alpha-like molecule and its possible role in response to O(2) deprivation.
    Ma E; Haddad G
    Biochem Biophys Res Commun; 1999 Aug; 261(2):459-63. PubMed ID: 10425207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental expression and enzymatic activity of pre-mRNA deaminase in Drosophila melanogaster.
    Ma E; Tucker MC; Chen Q; Haddad GG
    Brain Res Mol Brain Res; 2002 Jun; 102(1-2):100-4. PubMed ID: 12191498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the molecular responses to hypoxia using Drosophila as a genetic model.
    Farahani R; Haddad GG
    Respir Physiol Neurobiol; 2003 May; 135(2-3):221-9. PubMed ID: 12809621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila, a golden bug, for the dissection of the genetic basis of tolerance and susceptibility to hypoxia.
    Zhou D; Visk DW; Haddad GG
    Pediatr Res; 2009 Sep; 66(3):239-47. PubMed ID: 19542900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tolerance to low O2: lessons from invertebrate genetic models.
    Haddad GG
    Exp Physiol; 2006 Mar; 91(2):277-82. PubMed ID: 16431936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila dMRP4 regulates responsiveness to O2 deprivation and development under hypoxia.
    Huang H; Haddad GG
    Physiol Genomics; 2007 May; 29(3):260-6. PubMed ID: 17284667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved responses to oxygen deprivation.
    O'Farrell PH
    J Clin Invest; 2001 Mar; 107(6):671-4. PubMed ID: 11254666
    [No Abstract]   [Full Text] [Related]  

  • 18. Novel putative nicotinic acetylcholine receptor subunit genes, Dalpha5, Dalpha6 and Dalpha7, in Drosophila melanogaster identify a new and highly conserved target of adenosine deaminase acting on RNA-mediated A-to-I pre-mRNA editing.
    Grauso M; Reenan RA; Culetto E; Sattelle DB
    Genetics; 2002 Apr; 160(4):1519-33. PubMed ID: 11973307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling pleiotropic functions of A-to-I RNA editing in Drosophila.
    Jepson JE; Reenan RA
    Fly (Austin); 2010; 4(2):154-8. PubMed ID: 20215872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of a cDNA encoding a neuronal glutamate transporter from Drosophila melanogaster.
    Seal RP; Daniels GM; Wolfgang WJ; Forte MA; Amara SG
    Recept Channels; 1998; 6(1):51-64. PubMed ID: 9664622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.