These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 11255172)

  • 1. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling.
    Hutmacher DW; Schantz T; Zein I; Ng KW; Teoh SH; Tan KC
    J Biomed Mater Res; 2001 May; 55(2):203-16. PubMed ID: 11255172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fused deposition modeling of novel scaffold architectures for tissue engineering applications.
    Zein I; Hutmacher DW; Tan KC; Teoh SH
    Biomaterials; 2002 Feb; 23(4):1169-85. PubMed ID: 11791921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering.
    Hoque ME; Hutmacher DW; Feng W; Li S; Huang MH; Vert M; Wong YS
    J Biomater Sci Polym Ed; 2005; 16(12):1595-610. PubMed ID: 16366339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration.
    Ostrowska B; Di Luca A; Szlazak K; Moroni L; Swieszkowski W
    J Biomed Mater Res A; 2016 Apr; 104(4):991-1001. PubMed ID: 26749200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds.
    Ribeiro JFM; Oliveira SM; Alves JL; Pedro AJ; Reis RL; Fernandes EM; Mano JF
    Biofabrication; 2017 May; 9(2):025015. PubMed ID: 28349900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro.
    Shor L; Güçeri S; Wen X; Gandhi M; Sun W
    Biomaterials; 2007 Dec; 28(35):5291-7. PubMed ID: 17884162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system.
    Park S; Kim G; Jeon YC; Koh Y; Kim W
    J Mater Sci Mater Med; 2009 Jan; 20(1):229-34. PubMed ID: 18758915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N; Nuntanaranont T; Pattanachot W; Suttapreyasri S; Cheung LK
    Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of prefreezing temperature on pore structure in freeze-dried beta-TCP scaffolds.
    Lin L; Wang Z; Zhou L; Hu Q; Fang M
    Proc Inst Mech Eng H; 2013 Jan; 227(1):50-7. PubMed ID: 23516955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development.
    Mota C; Wang SY; Puppi D; Gazzarri M; Migone C; Chiellini F; Chen GQ; Chiellini E
    J Tissue Eng Regen Med; 2017 Jan; 11(1):175-186. PubMed ID: 24889107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction.
    Budyanto L; Goh YQ; Ooi CP
    J Mater Sci Mater Med; 2009 Jan; 20(1):105-11. PubMed ID: 18704655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.
    Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.