BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11255194)

  • 1. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts.
    Yoon JJ; Park TG
    J Biomed Mater Res; 2001 Jun; 55(3):401-8. PubMed ID: 11255194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biodegradable hybrid sponge nested with collagen microsponges.
    Chen G; Ushida T; Tateishi T
    J Biomed Mater Res; 2000 Aug; 51(2):273-9. PubMed ID: 10825227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive.
    Nam YS; Yoon JJ; Park TG
    J Biomed Mater Res; 2000; 53(1):1-7. PubMed ID: 10634946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.
    Nam YS; Park TG
    Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid oligomers: Part II. Biodegradation and drug delivery application.
    Wang N; Wu XS
    J Biomater Sci Polym Ed; 1997; 9(1):75-87. PubMed ID: 9505204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation behavior of hydrophilized PLGA scaffolds prepared by melt-molding particulate-leaching method: comparison with control hydrophobic one.
    Oh SH; Kang SG; Lee JH
    J Mater Sci Mater Med; 2006 Feb; 17(2):131-7. PubMed ID: 16502245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates.
    Chen G; Ushida T; Tateishi T
    Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method.
    Yoon JJ; Kim JH; Park TG
    Biomaterials; 2003 Jun; 24(13):2323-9. PubMed ID: 12699670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone.
    Thomson RC; Yaszemski MJ; Powers JM; Mikos AG
    J Biomater Sci Polym Ed; 1995; 7(1):23-38. PubMed ID: 7662615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering.
    Holy CE; Cheng C; Davies JE; Shoichet MS
    Biomaterials; 2001 Jan; 22(1):25-31. PubMed ID: 11085380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method.
    Oh SH; Kang SG; Kim ES; Cho SH; Lee JH
    Biomaterials; 2003 Oct; 24(22):4011-21. PubMed ID: 12834596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering.
    Yoo HS; Lee EA; Yoon JJ; Park TG
    Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering.
    Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ
    J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New technique to extend the useful life of a biodegradable cartilage implant.
    Spain TL; Agrawal CM; Athanasiou KA
    Tissue Eng; 1998; 4(4):343-52. PubMed ID: 9916167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering.
    Marra KG; Szem JW; Kumta PN; DiMilla PA; Weiss LE
    J Biomed Mater Res; 1999 Dec; 47(3):324-35. PubMed ID: 10487883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.