These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 11255194)

  • 21. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PLGA/PEG-hydrogel composite scaffolds with controllable mechanical properties.
    Rahman CV; Kuhn G; White LJ; Kirby GT; Varghese OP; McLaren JS; Cox HC; Rose FR; Müller R; Hilborn J; Shakesheff KM
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):648-55. PubMed ID: 23359448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering.
    Agrawal CM; McKinney JS; Lanctot D; Athanasiou KA
    Biomaterials; 2000 Dec; 21(23):2443-52. PubMed ID: 11055292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass.
    Huang X; Miao X
    J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(D,L-lactide-co-glycolide) for tissue-engineered bone.
    Lee SJ; Lee IW; Lee YM; Lee HB; Khang G
    J Biomater Sci Polym Ed; 2004; 15(8):1003-17. PubMed ID: 15461186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of in vitro spermatogenesis using poly(D,L-lactic-co-glycolic acid) (PLGA)-based macroporous biodegradable scaffolds.
    Lee JH; Oh JH; Lee JH; Kim MR; Min CK
    J Tissue Eng Regen Med; 2011 Feb; 5(2):130-7. PubMed ID: 20603864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly(D,L-lactic-co-glycolic acid) and hydrophilic oligonucleotides.
    Jeong JH; Park TG
    Bioconjug Chem; 2001; 12(6):917-23. PubMed ID: 11716682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of knitted polymeric scaffolds for potential use in ligament tissue engineering.
    Ge Z; Goh JC; Wang L; Tan EP; Lee EH
    J Biomater Sci Polym Ed; 2005; 16(9):1179-92. PubMed ID: 16231607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation.
    Nam YS; Park TG
    J Biomed Mater Res; 1999 Oct; 47(1):8-17. PubMed ID: 10400875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A heterogeneously structured composite based on poly(lactic-co-glycolic acid) microspheres and poly(vinyl alcohol) hydrogel nanoparticles for long-term protein drug delivery.
    Wang N; Wu XS; Li JK
    Pharm Res; 1999 Sep; 16(9):1430-5. PubMed ID: 10496661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of cylinder-shaped porous sponges of poly(L-lactic acid), poly(DL-lactic-co-glycolic acid), and poly(ε-caprolactone).
    He X; Kawazoe N; Chen G
    Biomed Res Int; 2014; 2014():106082. PubMed ID: 24719843
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states.
    Kranz H; Ubrich N; Maincent P; Bodmeier R
    J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation.
    Wu XS; Wang N
    J Biomater Sci Polym Ed; 2001; 12(1):21-34. PubMed ID: 11334187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen.
    Clark A; Milbrandt TA; Hilt JZ; Puleo DA
    Acta Biomater; 2014 May; 10(5):2125-32. PubMed ID: 24424269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo degradation of poly(L: -lactide-co-glycolide) films and scaffolds.
    Pamula E; Menaszek E
    J Mater Sci Mater Med; 2008 May; 19(5):2063-70. PubMed ID: 17968505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo.
    Cao Y; Mitchell G; Messina A; Price L; Thompson E; Penington A; Morrison W; O'Connor A; Stevens G; Cooper-White J
    Biomaterials; 2006 May; 27(14):2854-64. PubMed ID: 16426678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition.
    Park TG
    Biomaterials; 1995 Oct; 16(15):1123-30. PubMed ID: 8562787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.