BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 11256413)

  • 21. Naturally segregating quantitative trait loci affecting wing shape of Drosophila melanogaster.
    Mezey JG; Houle D; Nuzhdin SV
    Genetics; 2005 Apr; 169(4):2101-13. PubMed ID: 15520257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Phenotypic plasticity of wing size and shape in Drosophila melanogaster and D. simulans].
    Zhivotovskiĭ LA; Imasheva AG; David ZhR; Lazebnyĭ OE; Kariu ML
    Genetika; 1996 Apr; 32(4):517-22. PubMed ID: 8754066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Joint regulation of cell size and cell number in the wing blade of Drosophila melanogaster.
    McCabe J; French V; Partridge L
    Genet Res; 1997 Feb; 69(1):61-8. PubMed ID: 9164175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of body-size variation on flight-related traits in latitudinal populations of Drosophila melanogaster.
    Bhan V; Parkash R; Aggarwal DD
    J Genet; 2014 Apr; 93(1):103-12. PubMed ID: 24840827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Association between nucleotide variation in Egfr and wing shape in Drosophila melanogaster.
    Palsson A; Gibson G
    Genetics; 2004 Jul; 167(3):1187-98. PubMed ID: 15280234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blistered: a gene required for vein/intervein formation in wings of Drosophila.
    Fristrom D; Gotwals P; Eaton S; Kornberg TB; Sturtevant M; Bier E; Fristrom JW
    Development; 1994 Sep; 120(9):2661-71. PubMed ID: 7956840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Variation of a complex of wing characters in natural populations of Drosophila melanogaster].
    Bubliĭ OA; Imasheva AG; Lazebnyĭ OE
    Genetika; 1996 Nov; 32(11):1513-20. PubMed ID: 9119212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Morphological intergration between development compartments in the Drosophila wing.
    Klingenberg CP; Zaklan SD
    Evolution; 2000 Aug; 54(4):1273-85. PubMed ID: 11005294
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in the wing shape and size in Drosophila melanogaster treated with food grade titanium dioxide nanoparticles (E171) - A multigenerational study.
    Cvetković VJ; Jovanović B; Lazarević M; Jovanović N; Savić-Zdravković D; Mitrović T; Žikić V
    Chemosphere; 2020 Dec; 261():127787. PubMed ID: 32750623
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drosophila wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns.
    True JR; Edwards KA; Yamamoto D; Carroll SB
    Curr Biol; 1999 Dec; 9(23):1382-91. PubMed ID: 10607562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cross-sex genetic covariances limit the evolvability of wing-shape within and among species of Drosophila.
    Sztepanacz JL; Houle D
    Evolution; 2019 Aug; 73(8):1617-1633. PubMed ID: 31206655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative wing variation in inbred and outbred lines of Drosophila melanogaster.
    Curtsinger JW
    J Hered; 1986; 77(4):267-71. PubMed ID: 3093563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in Drosophila.
    Cook O; Biehs B; Bier E
    Development; 2004 May; 131(9):2113-24. PubMed ID: 15073155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The COE transcription factor Collier is a mediator of short-range Hedgehog-induced patterning of the Drosophila wing.
    Vervoort M; Crozatier M; Valle D; Vincent A
    Curr Biol; 1999 Jun; 9(12):632-9. PubMed ID: 10375526
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The sex-limited effects of mutations in the EGFR and TGF-β signaling pathways on shape and size sexual dimorphism and allometry in the Drosophila wing.
    Testa ND; Dworkin I
    Dev Genes Evol; 2016 Jun; 226(3):159-71. PubMed ID: 27038022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Properties of spontaneous mutational variance and covariance for wing size and shape in Drosophila melanogaster.
    Houle D; Fierst J
    Evolution; 2013 Apr; 67(4):1116-30. PubMed ID: 23550760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A single basis for developmental buffering of Drosophila wing shape.
    Breuker CJ; Patterson JS; Klingenberg CP
    PLoS One; 2006 Dec; 1(1):e7. PubMed ID: 17183701
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tests for the replication of an association between Egfr and natural variation in Drosophila melanogaster wing morphology.
    Palsson A; Dodgson J; Dworkin I; Gibson G
    BMC Genet; 2005 Aug; 6():44. PubMed ID: 16102176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The contrasting genetic architecture of wing size and shape in Drosophila melanogaster.
    Gilchrist AS; Partridge L
    Heredity (Edinb); 2001 Feb; 86(Pt 2):144-52. PubMed ID: 11380659
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Somatic mutation in the wings of Drosophila melanogaster females dysgenic due to P elements when reared at 29 degrees C.
    Getz C; van Schaik N
    Mutat Res; 1991 May; 248(1):187-94. PubMed ID: 1851538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.