These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11258957)

  • 1. Correlation between processing efficiency for ribonuclease P minimal substrates and conformation of the nucleotide -1 at the cleavage position.
    Zuleeg T; Hansen A; Pfeiffer T; Schübel H; Kreutzer R; Hartmann RK; Limmer S
    Biochemistry; 2001 Mar; 40(11):3363-9. PubMed ID: 11258957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of individual nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA cleavage site by short-range photo-cross-linking.
    Christian EL; McPheeters DS; Harris ME
    Biochemistry; 1998 Dec; 37(50):17618-28. PubMed ID: 9860878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperprocessing reaction of tRNA by Bacillus subtilis ribonuclease P ribozyme.
    Hori Y; Sakai E; Tanaka T; Kikuchi Y
    FEBS Lett; 2001 Sep; 505(2):337-9. PubMed ID: 11577704
    [No Abstract]   [Full Text] [Related]  

  • 4. Identification of adenosine functional groups involved in substrate binding by the ribonuclease P ribozyme.
    Siew D; Zahler NH; Cassano AG; Strobel SA; Harris ME
    Biochemistry; 1999 Feb; 38(6):1873-83. PubMed ID: 10026268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro hyperprocessing of tRNAs by Bacillus subtilis ribonuclease P RNA.
    Hori Y; Tanaka T; Kikuchi Y
    Nucleic Acids Res Suppl; 2001; (1):209-10. PubMed ID: 12836338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active site constraints in the hydrolysis reaction catalyzed by bacterial RNase P: analysis of precursor tRNAs with a single 3'-S-phosphorothiolate internucleotide linkage.
    Warnecke JM; Sontheimer EJ; Piccirilli JA; Hartmann RK
    Nucleic Acids Res; 2000 Feb; 28(3):720-7. PubMed ID: 10637323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the 3'-end of tRNA with ribonuclease P RNA.
    Oh BK; Pace NR
    Nucleic Acids Res; 1994 Oct; 22(20):4087-94. PubMed ID: 7524035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of Escherichia coli RNase P cleavage site selection: a detailed in vitro and in vivo analysis.
    Svärd SG; Kirsebom LA
    Nucleic Acids Res; 1993 Feb; 21(3):427-34. PubMed ID: 7680119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    J Mol Biol; 1995 Mar; 247(2):161-72. PubMed ID: 7535857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a region within M1 RNA of Escherichia coli RNase P important for the location of the cleavage site on a wild-type tRNA precursor.
    Kirsebom LA; Svärd SG
    J Mol Biol; 1993 Jun; 231(3):594-604. PubMed ID: 7685824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of C5 protein on Escherichia coli RNase P catalysis with a precursor tRNA(Phe) bearing a single mismatch in the acceptor stem.
    Park BH; Lee JH; Kim M; Lee Y
    Biochem Biophys Res Commun; 2000 Feb; 268(1):136-40. PubMed ID: 10652227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage of tRNA precursors by the RNA subunit of E. coli ribonuclease P (M1 RNA) is influenced by 3'-proximal CCA in the substrates.
    Guerrier-Takada C; McClain WH; Altman S
    Cell; 1984 Aug; 38(1):219-24. PubMed ID: 6380759
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetics and specificity of cleavage by RNase P is mainly dependent on the structure of the amino acid acceptor stem.
    Kirsebom LA; Svärd SG
    Nucleic Acids Res; 1992 Feb; 20(3):425-32. PubMed ID: 1371349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of hyperprocessing reaction of human tyrosine tRNA by ribonuclease P ribozyme from Escherichia coli.
    Ando T; Tanaka T; Hori Y; Kikuchi Y
    Biosci Biotechnol Biochem; 2002 Sep; 66(9):1967-71. PubMed ID: 12400701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavage efficiencies of model substrates for ribonuclease P from Escherichia coli and Thermus thermophilus.
    Schlegl J; Fürste JP; Bald R; Erdmann VA; Hartmann RK
    Nucleic Acids Res; 1992 Nov; 20(22):5963-70. PubMed ID: 1281315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the minimal substrate requirements for trans-cleavage by RNase P holoenzymes from Escherichia coli and Bacillus subtilis.
    Hansen A; Pfeiffer T; Zuleeg T; Limmer S; Ciesiolka J; Feltens R; Hartmann RK
    Mol Microbiol; 2001 Jul; 41(1):131-43. PubMed ID: 11454206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The acceptor stem in pre-tRNAs determines the cleavage specificity of RNase P.
    Holm PS; Krupp G
    Nucleic Acids Res; 1992 Feb; 20(3):421-3. PubMed ID: 1371348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel RNA substrates for the ribozyme from Bacillus subtilis ribonuclease P identified by in vitro selection.
    Pan T
    Biochemistry; 1995 Jul; 34(26):8458-64. PubMed ID: 7541243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The 3' substrate determinants for the catalytic efficiency of the Bacillus subtilis RNase P holoenzyme suggest autolytic processing of the RNase P RNA in vivo.
    Loria A; Pan T
    RNA; 2000 Oct; 6(10):1413-22. PubMed ID: 11073217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of structural modules in substrate binding by the ribozyme from Bacillus subtilis RNase P.
    Odell L; Huang V; Jakacka M; Pan T
    Nucleic Acids Res; 1998 Aug; 26(16):3717-23. PubMed ID: 9685487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.