BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 11259293)

  • 1. Localization of the extracellular end of the voltage sensor S4 in a potassium channel.
    Elinder F; Arhem P; Larsson HP
    Biophys J; 2001 Apr; 80(4):1802-9. PubMed ID: 11259293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for intersubunit interactions between S4 and S5 transmembrane segments of the Shaker potassium channel.
    Neale EJ; Elliott DJ; Hunter M; Sivaprasadarao A
    J Biol Chem; 2003 Aug; 278(31):29079-85. PubMed ID: 12883074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism of voltage sensor movements in a potassium channel.
    Elliott DJ; Neale EJ; Aziz Q; Dunham JP; Munsey TS; Hunter M; Sivaprasadarao A
    EMBO J; 2004 Dec; 23(24):4717-26. PubMed ID: 15565171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S4 charges move close to residues in the pore domain during activation in a K channel.
    Elinder F; Männikkö R; Larsson HP
    J Gen Physiol; 2001 Jul; 118(1):1-10. PubMed ID: 11429439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of Shaker-type K+ channel, KAT1, into the endoplasmic reticulum membrane: synergistic insertion of voltage-sensing segments, S3-S4, and independent insertion of pore-forming segments, S5-P-S6.
    Sato Y; Sakaguchi M; Goshima S; Nakamura T; Uozumi N
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):60-5. PubMed ID: 11756658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular movement of the voltage sensor in a K channel.
    Broomand A; Männikkö R; Larsson HP; Elinder F
    J Gen Physiol; 2003 Dec; 122(6):741-8. PubMed ID: 14610021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of the S4-S5 segment of the Shaker potassium channel.
    Ohlenschläger O; Hojo H; Ramachandran R; Görlach M; Haris PI
    Biophys J; 2002 Jun; 82(6):2995-3002. PubMed ID: 12023222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular compatibility of the channel gate and the N terminus of S5 segment for voltage-gated channel activity.
    Caprini M; Fava M; Valente P; Fernandez-Ballester G; Rapisarda C; Ferroni S; Ferrer-Montiel A
    J Biol Chem; 2005 May; 280(18):18253-64. PubMed ID: 15749711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits.
    Tiwari-Woodruff SK; Schulteis CT; Mock AF; Papazian DM
    Biophys J; 1997 Apr; 72(4):1489-500. PubMed ID: 9083655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The S4-S5 loop contributes to the ion-selective pore of potassium channels.
    Slesinger PA; Jan YN; Jan LY
    Neuron; 1993 Oct; 11(4):739-49. PubMed ID: 8398157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic scale structure and functional models of voltage-gated potassium channels.
    Durell SR; Guy HR
    Biophys J; 1992 Apr; 62(1):238-47; discussion 247-50. PubMed ID: 1600096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer.
    Posson DJ; Ge P; Miller C; Bezanilla F; Selvin PR
    Nature; 2005 Aug; 436(7052):848-51. PubMed ID: 16094368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A proton pore in a potassium channel voltage sensor reveals a focused electric field.
    Starace DM; Bezanilla F
    Nature; 2004 Feb; 427(6974):548-53. PubMed ID: 14765197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The S4 voltage sensor packs against the pore domain in the KAT1 voltage-gated potassium channel.
    Lai HC; Grabe M; Jan YN; Jan LY
    Neuron; 2005 Aug; 47(3):395-406. PubMed ID: 16055063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S3b amino acid residues do not shuttle across the bilayer in voltage-dependent Shaker K+ channels.
    Gonzalez C; Morera FJ; Rosenmann E; Alvarez O; Latorre R
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5020-5. PubMed ID: 15774578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel.
    Glauner KS; Mannuzzu LM; Gandhi CS; Isacoff EY
    Nature; 1999 Dec; 402(6763):813-7. PubMed ID: 10617202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic model of S4 motion in voltage-gated ion channels.
    Lecar H; Larsson HP; Grabe M
    Biophys J; 2003 Nov; 85(5):2854-64. PubMed ID: 14581190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications.
    del Camino D; Holmgren M; Liu Y; Yellen G
    Nature; 2000 Jan; 403(6767):321-5. PubMed ID: 10659852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrostatic domino effect in the Shaker K channel turret.
    Broomand A; Osterberg F; Wardi T; Elinder F
    Biophys J; 2007 Oct; 93(7):2307-14. PubMed ID: 17545243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled motions between pore and voltage-sensor domains: a model for Shaker B, a voltage-gated potassium channel.
    Treptow W; Maigret B; Chipot C; Tarek M
    Biophys J; 2004 Oct; 87(4):2365-79. PubMed ID: 15454436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.