These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 11259401)

  • 1. O2 dependence of K+ transport in sickle cells: the effect of different cell populations and the substituted benzaldehyde 12C79.
    Gibson JS; Khan A; Speake PF; Ellory JC
    FASEB J; 2001 Mar; 15(3):823-32. PubMed ID: 11259401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen dependence of K(+)-Cl- cotransport in human red cell ghosts and sickle cells.
    Khan AI; Drew C; Ball SE; Ball V; Ellory JC; Gibson JS
    Bioelectrochemistry; 2004 May; 62(2):141-6. PubMed ID: 15039017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the substituted benzaldehyde 12C79 on Cl--dependent K+ influx in human red blood cells.
    Gibson JS; Speake PF; Ellory JC
    Pflugers Arch; 1999 Feb; 437(3):498-500. PubMed ID: 9914409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential oxygen sensitivity of the K+-Cl- cotransporter in normal and sickle human red blood cells.
    Gibson JS; Speake PF; Ellory JC
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):225-34. PubMed ID: 9679176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen sensitivity of red cell membrane transporters revisited.
    Drew C; Ball V; Robinson H; Clive Ellory J; Gibson JS
    Bioelectrochemistry; 2004 May; 62(2):153-8. PubMed ID: 15039019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of intracellular magnesium and oxygen tension on K+-Cl- cotransport in normal and sickle human red cells.
    Muzyamba MC; Campbell EH; Gibson JS
    Cell Physiol Biochem; 2006; 17(3-4):121-8. PubMed ID: 16543728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells.
    Muzyamba MC; Gibson JS
    J Physiol; 2003 Mar; 547(Pt 3):903-11. PubMed ID: 12576491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dimethyl adipimidate on K+ transport and shape change in red blood cells from sickle cell patients.
    Gibson JS; Stewart GW; Ellory JC
    FEBS Lett; 2000 Sep; 480(2-3):179-83. PubMed ID: 11034324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Established and experimental treatments for sickle cell disease.
    De Franceschi L; Corrocher R
    Haematologica; 2004 Mar; 89(3):348-56. PubMed ID: 15020275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidants and regulation of K(+)-Cl(-) cotransport in equine red blood cells.
    Muzyamba MC; Speake PF; Gibson JS
    Am J Physiol Cell Physiol; 2000 Oct; 279(4):C981-9. PubMed ID: 11003578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of urea and oxygen tension on K flux in sickle cells.
    Culliford SJ; Ellory JC; Gibson JS; Speake PF
    Pflugers Arch; 1998 Apr; 435(5):740-2. PubMed ID: 9479028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the antisickling compound GBT1118 on the permeability of red blood cells from patients with sickle cell anemia.
    Al Balushi H; Dufu K; Rees DC; Brewin JN; Hannemann A; Oksenberg D; Lu DC; Gibson JS
    Physiol Rep; 2019 Mar; 7(6):e14027. PubMed ID: 30916477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carbon dioxide and pH variations in vitro on blood respiratory functions, red blood cell volume, transmembrane pH gradients, and sickling in sickle cell anemia.
    Ueda Y; Bookchin RM
    J Lab Clin Med; 1984 Aug; 104(2):146-59. PubMed ID: 6431043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two distinct pathways mediate the formation of intermediate density cells and hyperdense cells from normal density sickle red blood cells.
    Schwartz RS; Musto S; Fabry ME; Nagel RL
    Blood; 1998 Dec; 92(12):4844-55. PubMed ID: 9845552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of o-vanillin on K⁺ transport of red blood cells from patients with sickle cell disease.
    Hannemann A; Cytlak UM; Gbotosho OT; Rees DC; Tewari S; Gibson JS
    Blood Cells Mol Dis; 2014; 53(1-2):21-6. PubMed ID: 24594314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of an Anti-Sickling Drug with Hemoglobin in Red Blood Cells from a Patient with Sickle Cell Anemia.
    Strader MB; Liang H; Meng F; Harper J; Ostrowski DA; Henry ER; Shet AS; Eaton WA; Thein SL; Alayash AI
    Bioconjug Chem; 2019 Mar; 30(3):568-571. PubMed ID: 30794381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The super sickling haemoglobin HbS-Oman: a study of red cell sickling, K
    Al Balushi HWM; Wali Y; Al Awadi M; Al-Subhi T; Rees DC; Brewin JN; Hannemann A; Gibson JS
    Br J Haematol; 2017 Oct; 179(2):256-265. PubMed ID: 28699687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituted benzaldehydes (12C79 and 589C80) that stabilize oxyhaemoglobin also protect sickle cells against calcium-mediated dehydration.
    Stone PC; Nash GB; Stuart J
    Br J Haematol; 1992 Jul; 81(3):419-23. PubMed ID: 1390217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Volume regulation and KCl cotransport in reticulocyte populations of sickle and normal red blood cells.
    Quarmyne MO; Risinger M; Linkugel A; Frazier A; Joiner C
    Blood Cells Mol Dis; 2011 Aug; 47(2):95-9. PubMed ID: 21576026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of hemoglobin A and S on the volume- and pH-dependence of K-Cl cotransport in human erythrocyte ghosts.
    Vitoux D; Beuzard Y; Brugnara C
    J Membr Biol; 1999 Feb; 167(3):233-40. PubMed ID: 9929375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.