BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 11259420)

  • 1. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals.
    Schneider C; Tallman KA; Porter NA; Brash AR
    J Biol Chem; 2001 Jun; 276(24):20831-8. PubMed ID: 11259420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of linoleic acid hydroperoxide reaction with alkali.
    Gardner HW; Simpson TD; Hamberg M
    Lipids; 1996 Oct; 31(10):1023-8. PubMed ID: 8898300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of dihydroperoxides of linoleic and linolenic acids and studies on their transformation to 4-hydroperoxynonenal.
    Schneider C; Boeglin WE; Yin H; Ste DF; Hachey DL; Porter NA; Brash AR
    Lipids; 2005 Nov; 40(11):1155-62. PubMed ID: 16459928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide.
    Takahashi R; Goto T; Oe T; Lee SH
    Chem Biol Interact; 2015 Sep; 239():87-99. PubMed ID: 26111765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygenation of (3Z)-alkenals to 4-hydroxy-(2E)-alkenals in plant extracts: a nonenzymatic process.
    Noordermeer MA; Feussner I; Kolbe A; Veldink GA; Vliegenthart JF
    Biochem Biophys Res Commun; 2000 Oct; 277(1):112-6. PubMed ID: 11027649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoxidative transformation of chiral omega6 hydroxy linoleic and arachidonic acids to chiral 4-hydroxy-2E-nonenal.
    Schneider C; Porter NA; Brash AR
    Chem Res Toxicol; 2004 Jul; 17(7):937-41. PubMed ID: 15257619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of FeII-mediated decomposition of a linoleic acid-derived lipid hydroperoxide by liquid chromatography/mass spectrometry.
    Lee SH; Oe T; Arora JS; Blair IA
    J Mass Spectrom; 2005 May; 40(5):661-8. PubMed ID: 15739161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soybean lipoxygenase-1 enzymically forms both (9S)- and (13S)-hydroperoxides from linoleic acid by a pH-dependent mechanism.
    Gardner HW
    Biochim Biophys Acta; 1989 Feb; 1001(3):274-81. PubMed ID: 2492826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis and isomerization of 11-hydroperoxylinoleates by manganese- and iron-dependent lipoxygenases.
    Oliw EH; Cristea M; Hamberg M
    Lipids; 2004 Apr; 39(4):319-23. PubMed ID: 15357019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids.
    Tijet N; Schneider C; Muller BL; Brash AR
    Arch Biochem Biophys; 2001 Feb; 386(2):281-9. PubMed ID: 11368353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of ketodienoic fatty acids by the pure pea lipoxygenase-1.
    Kühn H; Wiesner R; Rathmann J; Schewe T
    Eicosanoids; 1991; 4(1):9-14. PubMed ID: 1905562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 9-Hydroxy-traumatin, a new metabolite of the lipoxygenase pathway.
    Gardner HW
    Lipids; 1998 Aug; 33(8):745-9. PubMed ID: 9727603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent adducts arising from the decomposition products of lipid hydroperoxides in the presence of cytochrome c.
    Williams MV; Wishnok JS; Tannenbaum SR
    Chem Res Toxicol; 2007 May; 20(5):767-75. PubMed ID: 17407328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel chiral stationary phase HPLC-MS/MS method to discriminate between enzymatic oxidation and auto-oxidation of phosphatidylcholine.
    Ito J; Nakagawa K; Kato S; Hirokawa T; Kuwahara S; Nagai T; Miyazawa T
    Anal Bioanal Chem; 2016 Nov; 408(27):7785-7793. PubMed ID: 27549797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fungal catalase reacts selectively with the 13S fatty acid hydroperoxide products of the adjacent lipoxygenase gene and exhibits 13S-hydroperoxide-dependent peroxidase activity.
    Teder T; Boeglin WE; Schneider C; Brash AR
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Jul; 1862(7):706-715. PubMed ID: 28363790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soybean lipoxygenase-1 oxidizes 3Z-nonenal. A route to 4s-hydroperoxy-2e-nonenal and related products.
    Gardner HW; Grove MJ
    Plant Physiol; 1998 Apr; 116(4):1359-66. PubMed ID: 9536053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of 4-hydroxy-2(E)-nonenal on soybean lipoxygenase-1.
    Gardner HW; Deighton N
    Lipids; 2001 Jun; 36(6):623-8. PubMed ID: 11485167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxylipin metabolism in the red alga Gracilariopsis lemaneiformis: mechanism of formation of vicinal dihydroxy fatty acids.
    Gerwick WH; Moghaddam M; Hamberg M
    Arch Biochem Biophys; 1991 Nov; 290(2):436-44. PubMed ID: 1929410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme-catalyzed and enzyme-triggered pathways in dioxygenation of 1-monolinoleoyl-rac-glycerol by potato tuber lipoxygenase.
    Butovich IA; Reddy CC
    Biochim Biophys Acta; 2001 Apr; 1546(2):379-98. PubMed ID: 11295443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygenation of (3Z)-nonenal to (2E)-4-hydroxy-2-nonenal in the broad bean (Vicia faba L.).
    Gardner HW; Hamberg M
    J Biol Chem; 1993 Apr; 268(10):6971-7. PubMed ID: 8463229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.