These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 11259420)
1. Two distinct pathways of formation of 4-hydroxynonenal. Mechanisms of nonenzymatic transformation of the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. Schneider C; Tallman KA; Porter NA; Brash AR J Biol Chem; 2001 Jun; 276(24):20831-8. PubMed ID: 11259420 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of linoleic acid hydroperoxide reaction with alkali. Gardner HW; Simpson TD; Hamberg M Lipids; 1996 Oct; 31(10):1023-8. PubMed ID: 8898300 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of dihydroperoxides of linoleic and linolenic acids and studies on their transformation to 4-hydroperoxynonenal. Schneider C; Boeglin WE; Yin H; Ste DF; Hachey DL; Porter NA; Brash AR Lipids; 2005 Nov; 40(11):1155-62. PubMed ID: 16459928 [TBL] [Abstract][Full Text] [Related]
4. Angiotensin II modification by decomposition products of linoleic acid-derived lipid hydroperoxide. Takahashi R; Goto T; Oe T; Lee SH Chem Biol Interact; 2015 Sep; 239():87-99. PubMed ID: 26111765 [TBL] [Abstract][Full Text] [Related]
5. Oxygenation of (3Z)-alkenals to 4-hydroxy-(2E)-alkenals in plant extracts: a nonenzymatic process. Noordermeer MA; Feussner I; Kolbe A; Veldink GA; Vliegenthart JF Biochem Biophys Res Commun; 2000 Oct; 277(1):112-6. PubMed ID: 11027649 [TBL] [Abstract][Full Text] [Related]
6. Autoxidative transformation of chiral omega6 hydroxy linoleic and arachidonic acids to chiral 4-hydroxy-2E-nonenal. Schneider C; Porter NA; Brash AR Chem Res Toxicol; 2004 Jul; 17(7):937-41. PubMed ID: 15257619 [TBL] [Abstract][Full Text] [Related]
7. Analysis of FeII-mediated decomposition of a linoleic acid-derived lipid hydroperoxide by liquid chromatography/mass spectrometry. Lee SH; Oe T; Arora JS; Blair IA J Mass Spectrom; 2005 May; 40(5):661-8. PubMed ID: 15739161 [TBL] [Abstract][Full Text] [Related]
8. Soybean lipoxygenase-1 enzymically forms both (9S)- and (13S)-hydroperoxides from linoleic acid by a pH-dependent mechanism. Gardner HW Biochim Biophys Acta; 1989 Feb; 1001(3):274-81. PubMed ID: 2492826 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis and isomerization of 11-hydroperoxylinoleates by manganese- and iron-dependent lipoxygenases. Oliw EH; Cristea M; Hamberg M Lipids; 2004 Apr; 39(4):319-23. PubMed ID: 15357019 [TBL] [Abstract][Full Text] [Related]
10. Biogenesis of volatile aldehydes from fatty acid hydroperoxides: molecular cloning of a hydroperoxide lyase (CYP74C) with specificity for both the 9- and 13-hydroperoxides of linoleic and linolenic acids. Tijet N; Schneider C; Muller BL; Brash AR Arch Biochem Biophys; 2001 Feb; 386(2):281-9. PubMed ID: 11368353 [TBL] [Abstract][Full Text] [Related]
11. Formation of ketodienoic fatty acids by the pure pea lipoxygenase-1. Kühn H; Wiesner R; Rathmann J; Schewe T Eicosanoids; 1991; 4(1):9-14. PubMed ID: 1905562 [TBL] [Abstract][Full Text] [Related]
12. 9-Hydroxy-traumatin, a new metabolite of the lipoxygenase pathway. Gardner HW Lipids; 1998 Aug; 33(8):745-9. PubMed ID: 9727603 [TBL] [Abstract][Full Text] [Related]
13. Covalent adducts arising from the decomposition products of lipid hydroperoxides in the presence of cytochrome c. Williams MV; Wishnok JS; Tannenbaum SR Chem Res Toxicol; 2007 May; 20(5):767-75. PubMed ID: 17407328 [TBL] [Abstract][Full Text] [Related]
14. A novel chiral stationary phase HPLC-MS/MS method to discriminate between enzymatic oxidation and auto-oxidation of phosphatidylcholine. Ito J; Nakagawa K; Kato S; Hirokawa T; Kuwahara S; Nagai T; Miyazawa T Anal Bioanal Chem; 2016 Nov; 408(27):7785-7793. PubMed ID: 27549797 [TBL] [Abstract][Full Text] [Related]
15. A fungal catalase reacts selectively with the 13S fatty acid hydroperoxide products of the adjacent lipoxygenase gene and exhibits 13S-hydroperoxide-dependent peroxidase activity. Teder T; Boeglin WE; Schneider C; Brash AR Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Jul; 1862(7):706-715. PubMed ID: 28363790 [TBL] [Abstract][Full Text] [Related]
16. Soybean lipoxygenase-1 oxidizes 3Z-nonenal. A route to 4s-hydroperoxy-2e-nonenal and related products. Gardner HW; Grove MJ Plant Physiol; 1998 Apr; 116(4):1359-66. PubMed ID: 9536053 [TBL] [Abstract][Full Text] [Related]
17. Effect of 4-hydroxy-2(E)-nonenal on soybean lipoxygenase-1. Gardner HW; Deighton N Lipids; 2001 Jun; 36(6):623-8. PubMed ID: 11485167 [TBL] [Abstract][Full Text] [Related]
18. Oxylipin metabolism in the red alga Gracilariopsis lemaneiformis: mechanism of formation of vicinal dihydroxy fatty acids. Gerwick WH; Moghaddam M; Hamberg M Arch Biochem Biophys; 1991 Nov; 290(2):436-44. PubMed ID: 1929410 [TBL] [Abstract][Full Text] [Related]
19. Enzyme-catalyzed and enzyme-triggered pathways in dioxygenation of 1-monolinoleoyl-rac-glycerol by potato tuber lipoxygenase. Butovich IA; Reddy CC Biochim Biophys Acta; 2001 Apr; 1546(2):379-98. PubMed ID: 11295443 [TBL] [Abstract][Full Text] [Related]
20. Oxygenation of (3Z)-nonenal to (2E)-4-hydroxy-2-nonenal in the broad bean (Vicia faba L.). Gardner HW; Hamberg M J Biol Chem; 1993 Apr; 268(10):6971-7. PubMed ID: 8463229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]