These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11260359)

  • 41. Cellular and molecular basis for electrical rhythmicity in gastrointestinal muscles.
    Horowitz B; Ward SM; Sanders KM
    Annu Rev Physiol; 1999; 61():19-43. PubMed ID: 10099681
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease.
    Vanderwinden JM; Rumessen JJ; de Kerchove d'Exaerde A; Gillard K; Panthier JJ; de Laet MH; Schiffmann SN
    Cell Tissue Res; 2002 Dec; 310(3):349-58. PubMed ID: 12457234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. K+ channels as potential targets for the treatment of gastrointestinal motor disorders.
    Currò D
    Eur J Pharmacol; 2014 Jun; 733():97-101. PubMed ID: 24726846
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells.
    Zhang L; Bonev AD; Nelson MT; Mawe GM
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1552-61. PubMed ID: 7506489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ionic conductances involved in generation and propagation of electrical slow waves in phasic gastrointestinal muscles.
    Sanders KM; Koh SD; Ordög T; Ward SM
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():100-5. PubMed ID: 15066013
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activation of small conductance Ca(2+)-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse ileum.
    Vogalis F; Goyal RK
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):497-508. PubMed ID: 9279803
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inward rectifier potassium conductance regulates membrane potential of canine colonic smooth muscle.
    Flynn ER; McManus CA; Bradley KK; Koh SD; Hegarty TM; Horowitz B; Sanders KM
    J Physiol; 1999 Jul; 518(Pt 1):247-56. PubMed ID: 10373706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular constituents of maxi KCa channels in human coronary smooth muscle: predominant alpha + beta subunit complexes.
    Tanaka Y; Meera P; Song M; Knaus HG; Toro L
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):545-57. PubMed ID: 9279807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization and regulation of Ca2+-dependent K+ channels in human esophageal smooth muscle.
    Hurley BR; Preiksaitis HG; Sims SM
    Am J Physiol; 1999 Apr; 276(4):G843-52. PubMed ID: 10198326
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Two-pore-domain potassium channels in smooth muscles: new components of myogenic regulation.
    Sanders KM; Koh SD
    J Physiol; 2006 Jan; 570(Pt 1):37-43. PubMed ID: 16239268
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ca(2+)-activated K channel in vas deferens smooth muscle cells.
    Morimoto K; Kukita F; Yamagishi S
    Ann N Y Acad Sci; 1993 Dec; 707():407-9. PubMed ID: 9137581
    [No Abstract]   [Full Text] [Related]  

  • 52. The Ca2+-activated K+ channel and its functional roles in smooth muscle cells of guinea pig taenia coli.
    Hu SL; Yamamoto Y; Kao CY
    J Gen Physiol; 1989 Nov; 94(5):833-47. PubMed ID: 2592951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional and molecular expression of a voltage-dependent K(+) channel (Kv1.1) in interstitial cells of Cajal.
    Hatton WJ; Mason HS; Carl A; Doherty P; Latten MJ; Kenyon JL; Sanders KM; Horowitz B
    J Physiol; 2001 Jun; 533(Pt 2):315-27. PubMed ID: 11389194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of cellular orientation in electrical coupling between gastrointestinal smooth muscle.
    Vigmond EJ; Bardakjian BJ
    Ann Biomed Eng; 1998; 26(4):703-11. PubMed ID: 9662162
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of ruthenium red on membrane ionic currents in urinary bladder smooth muscle cells of the guinea-pig.
    Hirano M; Imaizumi Y; Muraki K; Yamada A; Watanabe M
    Pflugers Arch; 1998 Apr; 435(5):645-53. PubMed ID: 9479017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiological roles for K+ channels and gap junctions in urogenital smooth muscle: implications for improved understanding of urogenital function, disease and therapy.
    Karicheti V; Christ GJ
    Curr Drug Targets; 2001 Mar; 2(1):1-20. PubMed ID: 11465535
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential modulation of Ca2(+)-activated K+ channels by substance P.
    Mayer EA; Loo DD; Kodner A; Reddy SN
    Am J Physiol; 1989 Dec; 257(6 Pt 1):G887-97. PubMed ID: 2481980
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of different types of K+ channel modulators on the spontaneous myogenic contraction of guinea-pig urinary bladder smooth muscle.
    Imai T; Okamoto T; Yamamoto Y; Tanaka H; Koike K; Shigenobu K; Tanaka Y
    Acta Physiol Scand; 2001 Nov; 173(3):323-33. PubMed ID: 11736694
    [TBL] [Abstract][Full Text] [Related]  

  • 59. K(+) channels as therapeutic drug targets.
    Wickenden A
    Pharmacol Ther; 2002; 94(1-2):157-82. PubMed ID: 12191600
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular identification of a component of delayed rectifier current in gastrointestinal smooth muscles.
    Schmalz F; Kinsella J; Koh SD; Vogalis F; Schneider A; Flynn ER; Kenyon JL; Horowitz B
    Am J Physiol; 1998 May; 274(5):G901-11. PubMed ID: 9612272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.