These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 11260721)

  • 61. Cormack-Jolly-Seber model with environmental covariates: a P-spline approach.
    Stoklosa J; Huggins RM
    Biom J; 2012 Nov; 54(6):861-74. PubMed ID: 23027314
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Uncertainty and sensitivity analyses of extinction probabilities suggest that adult female mortality is the weakest link for populations of tsetse (Glossina spp).
    Are EB; Hargrove JW
    PLoS Negl Trop Dis; 2020 May; 14(5):e0007854. PubMed ID: 32392220
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Temporal patterns in growth and survival of the round goby Neogobius melanostomus.
    Lynch MP; Mensinger AF
    J Fish Biol; 2013 Jan; 82(1):111-24. PubMed ID: 23331141
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Parameter redundancy in Jolly-Seber tag loss models.
    Cai W; Yurchak S; Cole DJ; Cowen LLE
    Ecol Evol; 2021 Feb; 11(3):1131-1149. PubMed ID: 33598119
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Complete tag loss in capture-recapture studies affects abundance estimates: An elephant seal case study.
    Malcolm-White E; McMahon CR; Cowen LLE
    Ecol Evol; 2020 Mar; 10(5):2377-2384. PubMed ID: 32184988
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A comparison of abundance estimates from extended batch-marking and Jolly-Seber-type experiments.
    Cowen LL; Besbeas P; Morgan BJ; Schwarz CJ
    Ecol Evol; 2014 Jan; 4(2):210-8. PubMed ID: 24558576
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Interval estimates for the ratio of the means of two normal populations with variances related to the means.
    Cox CP
    Biometrics; 1985 Mar; 41(1):261-5. PubMed ID: 4005380
    [TBL] [Abstract][Full Text] [Related]  

  • 68. On the accuracy of some mark-recapture estimators.
    Roff DA
    Oecologia; 1973 Mar; 12(1):15-34. PubMed ID: 28307722
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Understanding the impact of correlation within pair-bonds on Cormack-Jolly-Seber models.
    Draghici AM; Challenger WO; Bonner SJ
    Ecol Evol; 2021 Jun; 11(11):5966-5984. PubMed ID: 34141196
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characteristics and Demography of a Free-Ranging Ethiopian Hedgehog,
    Pettett C; W Macdonald D; Al-Hajiri A; Al-Jabiry H; Yamaguchi N
    Animals (Basel); 2020 May; 10(6):. PubMed ID: 32486289
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Estimation of some population parameters of Drosophila limbata V. Roser in a greenhouse.
    Hummel HK; van Delden W; Drent RH
    Oecologia; 1979 Aug; 41(2):135-143. PubMed ID: 28308858
    [TBL] [Abstract][Full Text] [Related]  

  • 72. No evidence for direct thermal carryover effects on starvation tolerance in the obligate blood-feeder,
    Weaving H; Lord JS; Haines L; English S
    Ecol Evol; 2023 Oct; 13(10):e10652. PubMed ID: 37869424
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Satellite-based modelling of potential tsetse (Glossina pallidipes) breeding and foraging sites using teneral and non-teneral fly occurrence data.
    Gachoki S; Groen T; Vrieling A; Okal M; Skidmore A; Masiga D
    Parasit Vectors; 2021 Sep; 14(1):506. PubMed ID: 34583766
    [TBL] [Abstract][Full Text] [Related]  

  • 74. A pilot study to delimit tsetse target populations in Zimbabwe.
    Chikowore G; Dicko AH; Chinwada P; Zimba M; Shereni W; Roger F; Bouyer J; Guerrini L
    PLoS Negl Trop Dis; 2017 May; 11(5):e0005566. PubMed ID: 28467409
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Patterns of Genome-Wide Variation in Glossina fuscipes fuscipes Tsetse Flies from Uganda.
    Gloria-Soria A; Dunn WA; Telleria EL; Evans BR; Okedi L; Echodu R; Warren WC; Montague MJ; Aksoy S; Caccone A
    G3 (Bethesda); 2016 Jun; 6(6):1573-84. PubMed ID: 27172181
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mortality estimates from ovarian age distributions of the tsetse fly Glossina pallidipes Austen sampled in Zimbabwe suggest the need for new analytical approaches.
    Hargrove JW; Ackley SF
    Bull Entomol Res; 2015 Jun; 105(3):294-304. PubMed ID: 25804211
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A Bayesian geostatistical Moran Curve model for estimating net changes of tsetse populations in Zambia.
    Sedda L; Mweempwa C; Ducheyne E; De Pus C; Hendrickx G; Rogers DJ
    PLoS One; 2014; 9(4):e96002. PubMed ID: 24755848
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Glossina fuscipes populations provide insights for human African trypanosomiasis transmission in Uganda.
    Aksoy S; Caccone A; Galvani AP; Okedi LM
    Trends Parasitol; 2013 Aug; 29(8):394-406. PubMed ID: 23845311
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology.
    Moore S; Shrestha S; Tomlinson KW; Vuong H
    J R Soc Interface; 2012 May; 9(70):817-30. PubMed ID: 22072451
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Complex Interactions between Temperature and Relative Humidity on Water Balance of Adult Tsetse (Glossinidae, Diptera): Implications for Climate Change.
    Kleynhans E; Terblanche JS
    Front Physiol; 2011; 2():74. PubMed ID: 22046163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.