These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 11260795)

  • 1. Folding defects in fibrillar collagens.
    Byers PH
    Philos Trans R Soc Lond B Biol Sci; 2001 Feb; 356(1406):151-7; discussion 157-8. PubMed ID: 11260795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location of glycine mutations within a bacterial collagen protein affects degree of disruption of triple-helix folding and conformation.
    Cheng H; Rashid S; Yu Z; Yoshizumi A; Hwang E; Brodsky B
    J Biol Chem; 2011 Jan; 286(3):2041-6. PubMed ID: 21071452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stability and folding of the collagen triple helix and the effects of mutations in osteogenesis imperfecta on the triple helix of type I collagen.
    Bächinger HP; Morris NP; Davis JM
    Am J Med Genet; 1993 Jan; 45(2):152-62. PubMed ID: 8456797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic and kinetic consequences of substituting glycine at different positions in a Pro-Hyp-Gly repeat collagen model peptide.
    Chen YS; Chen CC; Horng JC
    Biopolymers; 2011; 96(1):60-8. PubMed ID: 20560144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of the mechanism of triple-helix peptide folding in the absence of a C-terminal nucleation domain and its implications for mutations in collagen disorders.
    Buevich AV; Silva T; Brodsky B; Baum J
    J Biol Chem; 2004 Nov; 279(45):46890-5. PubMed ID: 15299012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid sequence environment modulates the disruption by osteogenesis imperfecta glycine substitutions in collagen-like peptides.
    Yang W; Battineni ML; Brodsky B
    Biochemistry; 1997 Jun; 36(23):6930-5. PubMed ID: 9188687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear magnetic resonance shows asymmetric loss of triple helix in peptides modeling a collagen mutation in brittle bone disease.
    Liu X; Kim S; Dai QH; Brodsky B; Baum J
    Biochemistry; 1998 Nov; 37(44):15528-33. PubMed ID: 9799516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteogenesis imperfecta. The position of substitution for glycine by cysteine in the triple helical domain of the pro alpha 1(I) chains of type I collagen determines the clinical phenotype.
    Starman BJ; Eyre D; Charbonneau H; Harrylock M; Weis MA; Weiss L; Graham JM; Byers PH
    J Clin Invest; 1989 Oct; 84(4):1206-14. PubMed ID: 2794057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinked collagen VI tetramers and reduced microfibril formation as a result of Bethlem myopathy and introduced triple helical glycine mutations.
    Lamandé SR; Mörgelin M; Selan C; Jöbsis GJ; Baas F; Bateman JF
    J Biol Chem; 2002 Jan; 277(3):1949-56. PubMed ID: 11707460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Collagens: why such a structural complexity?].
    Borel JP; Monboisse JC
    C R Seances Soc Biol Fil; 1993; 187(2):124-42. PubMed ID: 8019896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Type-III procollagen assembly in semi-intact cells: chain association, nucleation and triple-helix folding do not require formation of inter-chain disulphide bonds but triple-helix nucleation does require hydroxylation.
    Bulleid NJ; Wilson R; Lees JF
    Biochem J; 1996 Jul; 317 ( Pt 1)(Pt 1):195-202. PubMed ID: 8694764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical implications of the domain structure of fiber-forming collagens: comparison of the molecular and fibrillar flexibilities of the alpha1-chains found in types I-III collagen.
    Silver FH; Horvath I; Foran DJ
    J Theor Biol; 2002 May; 216(2):243-54. PubMed ID: 12079374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycine Substitutions in Collagen Heterotrimers Alter Triple Helical Assembly.
    Clements KA; Acevedo-Jake AM; Walker DR; Hartgerink JD
    Biomacromolecules; 2017 Feb; 18(2):617-624. PubMed ID: 28098982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding delay and structural perturbations caused by type IV collagen natural interruptions and nearby Gly missense mutations.
    Hwang ES; Brodsky B
    J Biol Chem; 2012 Feb; 287(6):4368-75. PubMed ID: 22179614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is glycine a surrogate for a D-amino acid in the collagen triple helix?
    Horng JC; Kotch FW; Raines RT
    Protein Sci; 2007 Feb; 16(2):208-15. PubMed ID: 17189476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct NMR measurement of folding kinetics of a trimeric peptide.
    Liu X; Siegel DL; Fan P; Brodsky B; Baum J
    Biochemistry; 1996 Apr; 35(14):4306-13. PubMed ID: 8605179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenesis imperfecta collagen-like peptides: self-assembly and mineralization on surfaces.
    Xu P; Huang J; Cebe P; Kaplan DL
    Biomacromolecules; 2008 Jun; 9(6):1551-7. PubMed ID: 18498187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability related bias in residues replacing glycines within the collagen triple helix (Gly-Xaa-Yaa) in inherited connective tissue disorders.
    Persikov AV; Pillitteri RJ; Amin P; Schwarze U; Byers PH; Brodsky B
    Hum Mutat; 2004 Oct; 24(4):330-7. PubMed ID: 15365990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C-propeptide domain of procollagen can be replaced with a transmembrane domain without affecting trimer formation or collagen triple helix folding during biosynthesis.
    Bulleid NJ; Dalley JA; Lees JF
    EMBO J; 1997 Nov; 16(22):6694-701. PubMed ID: 9362484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crucial role of trimerization domains in collagen folding.
    Boudko SP; Engel J; Bächinger HP
    Int J Biochem Cell Biol; 2012 Jan; 44(1):21-32. PubMed ID: 22001560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.