BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11261600)

  • 1. Ageing human bone: factors affecting its biomechanical properties and the role of collagen.
    Zioupos P
    J Biomater Appl; 2001 Jan; 15(3):187-229. PubMed ID: 11261600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(2):270-278. PubMed ID: 11207929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(Pt 2):270-8. PubMed ID: 11430140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of collagen and mineral to the elastic-plastic properties of bone.
    Burstein AH; Zika JM; Heiple KG; Klein L
    J Bone Joint Surg Am; 1975 Oct; 57(7):956-61. PubMed ID: 1184645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructural heterogeneity and the fracture toughness of bone.
    Phelps JB; Hubbard GB; Wang X; Agrawal CM
    J Biomed Mater Res; 2000 Sep; 51(4):735-41. PubMed ID: 10880123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of collagen denaturation on the toughness of bone.
    Wang X; Bank RA; TeKoppele JM; Hubbard GB; Athanasiou KA; Agrawal CM
    Clin Orthop Relat Res; 2000 Feb; (371):228-39. PubMed ID: 10693570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigue strength of human cortical bone: age, physical, and material heterogeneity effects.
    Zioupos P; Gresle M; Winwood K
    J Biomed Mater Res A; 2008 Sep; 86(3):627-36. PubMed ID: 18022837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties.
    Martin RB; Boardman DL
    J Biomech; 1993 Sep; 26(9):1047-54. PubMed ID: 8408087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of collagen in the declining mechanical properties of aging human cortical bone.
    Zioupos P; Currey JD; Hamer AJ
    J Biomed Mater Res; 1999 May; 45(2):108-16. PubMed ID: 10397964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of collagen in determining bone mechanical properties.
    Wang X; Bank RA; TeKoppele JM; Agrawal CM
    J Orthop Res; 2001 Nov; 19(6):1021-6. PubMed ID: 11781000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors regulating bone maturity and strength in poultry.
    Rath NC; Huff GR; Huff WE; Balog JM
    Poult Sci; 2000 Jul; 79(7):1024-32. PubMed ID: 10901206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into material and structural basis of bone fragility from diseases associated with fractures: how determinants of the biomechanical properties of bone are compromised by disease.
    Chavassieux P; Seeman E; Delmas PD
    Endocr Rev; 2007 Apr; 28(2):151-64. PubMed ID: 17200084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength.
    Martin RB; Ishida J
    J Biomech; 1989; 22(5):419-26. PubMed ID: 2777816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The toughness of cortical bone and its relationship with age.
    Wang X; Puram S
    Ann Biomed Eng; 2004 Jan; 32(1):123-35. PubMed ID: 14964728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo fatigue microcracks in human bone: material properties of the surrounding bone matrix.
    Zioupos P
    Eur J Morphol; 2005; 42(1-2):31-41. PubMed ID: 16123022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postmortem change in bone biomechanical properties: Loss of plasticity.
    Wescott DJ
    Forensic Sci Int; 2019 Jul; 300():164-169. PubMed ID: 31125761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of antiresorptive therapy on the structural and material properties of bone strength].
    Kishimoto H
    Clin Calcium; 2016 Jan; 26(1):107-15. PubMed ID: 26728537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach.
    Martínez-Reina J; Domínguez J; García-Aznar JM
    Biomech Model Mechanobiol; 2011 Jun; 10(3):309-22. PubMed ID: 20596743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.