These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11261853)

  • 41. Electrodepositable alginate membranes for enzymatic sensors: An amperometric glucose biosensor for whole blood analysis.
    Márquez A; Jiménez-Jorquera C; Domínguez C; Muñoz-Berbel X
    Biosens Bioelectron; 2017 Nov; 97():136-142. PubMed ID: 28582709
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The carbon paste electrode encrusted with a microreactor as glucose biosensor.
    Kulys J
    Biosens Bioelectron; 1999 May; 14(5):473-9. PubMed ID: 10451915
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diffusion-reaction kinetics of microfluidic amperometric biosensors.
    Li H; Lu Y; Wong PK
    Lab Chip; 2018 Oct; 18(20):3086-3089. PubMed ID: 30207365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensitive amperometric biosensors for detection of glucose and cholesterol using a platinum/reduced graphene oxide/poly(3-aminobenzoic acid) film-modified screen-printed carbon electrode.
    Phetsang S; Jakmunee J; Mungkornasawakul P; Laocharoensuk R; Ounnunkad K
    Bioelectrochemistry; 2019 Jun; 127():125-135. PubMed ID: 30818262
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amperometric biosensor system for simultaneous determination of adenosine-5'-triphosphate and glucose.
    Kucherenko IS; Didukh DY; Soldatkin OO; Soldatkin AP
    Anal Chem; 2014 Jun; 86(11):5455-62. PubMed ID: 24810180
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations.
    Newton AJ; Wall MJ; Richardson MJ
    J Neurophysiol; 2017 Mar; 117(3):937-949. PubMed ID: 27927788
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of an amperometric bienzyme biosensing system with neutral red functionalized carbon nanotubes.
    Jeykumari DR; Narayanan SS
    Analyst; 2009 Aug; 134(8):1618-22. PubMed ID: 20448929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Polypyrrole-hydrogel composites for the construction of clinically important biosensors.
    Brahim S; Narinesingh D; Guiseppi-Elie A
    Biosens Bioelectron; 2002 Jan; 17(1-2):53-9. PubMed ID: 11742735
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modulation of enzyme catalytic properties and biosensor calibration parameters with chlorides: studies with glucose oxidase.
    Kagan M; Kivirand K; Rinken T
    Enzyme Microb Technol; 2013 Sep; 53(4):278-82. PubMed ID: 23931694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Carbon nanotubes (CNTs) for the development of electrochemical biosensors.
    Lin Y; Yantasee W; Wang J
    Front Biosci; 2005 Jan; 10():492-505. PubMed ID: 15574386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parallel synthesis of libraries of anodic and cathodic functionalized electrodeposition paints as immobilization matrix for amperometric biosensors.
    Ngounou B; Aliyev EH; Guschin DA; Sultanov YM; Efendiev AA; Schuhmann W
    Bioelectrochemistry; 2007 Sep; 71(1):81-90. PubMed ID: 17092781
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microfabricated glucose biosensor for culture well operation.
    Pemberton RM; Cox T; Tuffin R; Sage I; Drago GA; Biddle N; Griffiths J; Pittson R; Johnson G; Xu J; Jackson SK; Kenna G; Luxton R; Hart JP
    Biosens Bioelectron; 2013 Apr; 42():668-77. PubMed ID: 23265827
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of biosensors for immunoassays.
    Bannister JV
    Ann Ist Super Sanita; 1991; 27(1):145-7. PubMed ID: 1958022
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polypyrrole based amperometric and potentiometric phosphate biosensors: a comparative study B.
    Lawal AT; Adeloju SB
    Biosens Bioelectron; 2013 Feb; 40(1):377-84. PubMed ID: 23021852
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electrodeposition polymers as immobilization matrices in amperometric biosensors: improved polymer synthesis and biosensor fabrication.
    Guschin DA; Shkil H; Schuhmann W
    Anal Bioanal Chem; 2009 Nov; 395(6):1693-706. PubMed ID: 19763552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.
    Xiang D; Yin L; Ma J; Guo E; Li Q; Li Z; Liu K
    Analyst; 2015 Jan; 140(2):644-53. PubMed ID: 25429370
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modelling Amperometric Biosensors Based on Chemically Modified Electrodes.
    Baronas R; Kulys J
    Sensors (Basel); 2008 Aug; 8(8):4800-4820. PubMed ID: 27873787
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic delay and maximal dynamic error in continuous biosensors.
    Baker DA; Gough DA
    Anal Chem; 1996 Apr; 68(8):1292-7. PubMed ID: 8651496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A highly selective amperometric biosensor array for the simultaneous determination of glutamate, glucose, choline, acetylcholine, lactate and pyruvate.
    Kucherenko DY; Kucherenko IS; Soldatkin OO; Topolnikova YV; Dzyadevych SV; Soldatkin AP
    Bioelectrochemistry; 2019 Aug; 128():100-108. PubMed ID: 30959397
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amperometric ATP biosensor based on polymer entrapped enzymes.
    Kueng A; Kranz C; Mizaikoff B
    Biosens Bioelectron; 2004 May; 19(10):1301-7. PubMed ID: 15046763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.