BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 11261875)

  • 1. Preparation and characterization of poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane.
    Watanabe J; Ooya T; Park KD; Kim YH; Yui N
    J Biomater Sci Polym Ed; 2000; 11(12):1333-45. PubMed ID: 11261875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolyzable polyrotaxane.
    Ichi T; Watanabe J; Ooya T; Yui N
    Biomacromolecules; 2001; 2(1):204-10. PubMed ID: 11749174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibroblast adhesion and proliferation on poly(ethylene glycol) hydrogels crosslinked by hydrolyzable polyrotaxane.
    Watanabe J; Ooya T; Nitta KH; Park KD; Kim YH; Yui N
    Biomaterials; 2002 Oct; 23(20):4041-8. PubMed ID: 12182305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of porous hydrolyzable polyrotaxane hydrogels and their erosion behavior.
    Ichi T; Nitta K; Lee WK; Ooya T; Yui N
    J Biomater Sci Polym Ed; 2003; 14(6):567-79. PubMed ID: 12901438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of biodegradable polyrotaxane as a novel supramolecular-structured drug carrier.
    Ooya T; Yui N
    J Biomater Sci Polym Ed; 1997; 8(6):437-55. PubMed ID: 9151192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering.
    Lee WK; Ichi T; Ooya T; Yamamoto T; Katoh M; Yui N
    J Biomed Mater Res A; 2003 Dec; 67(4):1087-92. PubMed ID: 14624493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of theophylline-polyrotaxane conjugates and their drug release via supramolecular dissociation.
    Ooya T; Yui N
    J Control Release; 1999 Apr; 58(3):251-69. PubMed ID: 10099151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ethylene glycol) hydrogels cross-linked by hydrolyzable polyrotaxane containing hydroxyapatite particles as scaffolds for bone regeneration.
    Fujimoto M; Isobe M; Yamaguchi S; Amagasa T; Watanabe A; Ooya T; Yui N
    J Biomater Sci Polym Ed; 2005; 16(12):1611-21. PubMed ID: 16366340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel biodegradable cholesterol-modified polyrotaxane hydrogels for cartilage regeneration.
    Tachaboonyakiat W; Furubayashi T; Katoh M; Ooya T; Yui N
    J Biomater Sci Polym Ed; 2004; 15(11):1389-404. PubMed ID: 15648570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of acetylation of biodegradable polyrotaxanes on its supramolecular dissociation via terminal ester hydrolysis.
    Watanabe J; Ooya T; Yui N
    J Biomater Sci Polym Ed; 1999; 10(12):1275-88. PubMed ID: 10673022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol).
    Ooya T; Utsunomiya H; Eguchi M; Yui N
    Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local and network structure of thermoreversible polyrotaxane hydrogels based on poly(ethylene glycol) and methylated alpha-cyclodextrins.
    Kataoka T; Kidowaki M; Zhao C; Minamikawa H; Shimizu T; Ito K
    J Phys Chem B; 2006 Dec; 110(48):24377-83. PubMed ID: 17134190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Branched polyrotaxane hydrogels consisting of alpha-cyclodextrin and low-molecular-weight four-arm polyethylene glycol and the utility of their thixotropic property for controlled drug release.
    Wang J; Williamson GS; Yang H
    Colloids Surf B Biointerfaces; 2018 May; 165():144-149. PubMed ID: 29476924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-cyclodextrins with a stepwise delivery property.
    Zhu W; Li Y; Liu L; Chen Y; Wang C; Xi F
    Biomacromolecules; 2010 Nov; 11(11):3086-92. PubMed ID: 20958000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization, and pH-triggered dethreading of alpha-cyclodextrin-poly(ethylene glycol) polyrotaxanes bearing cleavable endcaps.
    Loethen S; Ooya T; Choi HS; Yui N; Thompson DH
    Biomacromolecules; 2006 Sep; 7(9):2501-6. PubMed ID: 16961310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin.
    Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N
    Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolytically degradable polyrotaxane hydrogels for drug and cell delivery applications.
    Pradal C; Grøndahl L; Cooper-White JJ
    Biomacromolecules; 2015 Jan; 16(1):389-403. PubMed ID: 25469767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and structural analysis of polyrotaxane fibers and films.
    Sakai Y; Ueda K; Katsuyama N; Shimizu K; Sato S; Kuroiwa J; Araki J; Teramoto A; Abe K; Yokoyama H; Ito K
    J Phys Condens Matter; 2011 Jul; 23(28):284108. PubMed ID: 21709323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo bone and soft tissue response to injectable, biodegradable oligo(poly(ethylene glycol) fumarate) hydrogels.
    Shin H; Quinten Ruhé P; Mikos AG; Jansen JA
    Biomaterials; 2003 Aug; 24(19):3201-11. PubMed ID: 12763447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.