These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 11261945)
1. Synthesis and electrochemical studies of diiron complexes of 1,8-naphthyridine-based dinucleating ligands to model features of the active sites of non-heme diiron enzymes. He C; Lippard SJ Inorg Chem; 2001 Mar; 40(7):1414-20. PubMed ID: 11261945 [TBL] [Abstract][Full Text] [Related]
2. Modeling features of the non-heme diiron cores in O2-activating enzymes through the synthesis, characterization, and oxidation of 1,8-naphthyridine-based complexes. Kuzelka J; Mukhopadhyay S; Spingler B; Lippard SJ Inorg Chem; 2003 Oct; 42(20):6447-57. PubMed ID: 14514321 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and spectroscopic studies of non-heme diiron(III) species with a terminal hydroperoxide ligand: models for hemerythrin. Mizoguchi TJ; Kuzelka J; Spingler B; DuBois JL; Davydov RM; Hedman B; Hodgson KO; Lippard SJ Inorg Chem; 2001 Aug; 40(18):4662-73. PubMed ID: 11511213 [TBL] [Abstract][Full Text] [Related]
4. Toward functional carboxylate-bridged diiron protein mimics: achieving structural stability and conformational flexibility using a macrocylic ligand framework. Do LH; Lippard SJ J Am Chem Soc; 2011 Jul; 133(27):10568-81. PubMed ID: 21682286 [TBL] [Abstract][Full Text] [Related]
5. Tetranuclear iron(III) complexes of an octadentate pyridine-carboxylate ligand and their catalytic activity in alkane oxidation by hydrogen peroxide. Gutkina EA; Trukhan VM; Pierpont CG; Mkoyan S; Strelets VV; Nordlander E; Shteinman AA Dalton Trans; 2006 Jan; (3):492-501. PubMed ID: 16395449 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of several dicopper(I) complexes and a spin-delocalized dicopper(I,II) mixed-valence complex using a 1,8-naphthyridine-based dinucleating ligand. He C; Lippard SJ Inorg Chem; 2000 Nov; 39(23):5225-31. PubMed ID: 11154580 [TBL] [Abstract][Full Text] [Related]
7. Modeling the syn disposition of nitrogen donors at the active sites of carboxylate-bridged diiron enzymes. Enforcing dinuclearity and kinetic stability with a 1,2-diethynylbenzene-based ligand. Kuzelka J; Farrell JR; Lippard SJ Inorg Chem; 2003 Dec; 42(26):8652-62. PubMed ID: 14686842 [TBL] [Abstract][Full Text] [Related]
9. "Bridging hydroxide effect" on mu-carboxylato coordination and electrochemical potentials of bimetallic centers: Mn2(II,II) and Mn2(III,III) complexes as functional models of dimanganese catalases. Boelrijk AE; Khangulov SV; Dismukes GC Inorg Chem; 2000 Jul; 39(14):3009-19. PubMed ID: 11196895 [TBL] [Abstract][Full Text] [Related]
10. Diiron(II) mu-aqua-mu-hydroxo model for non-heme iron sites in proteins. Korendovych IV; Kryatov SV; Reiff WM; Rybak-Akimova EV Inorg Chem; 2005 Nov; 44(24):8656-8. PubMed ID: 16296818 [TBL] [Abstract][Full Text] [Related]
11. Water affects the stereochemistry and dioxygen reactivity of carboxylate-rich diiron(II) models for the diiron centers in dioxygen-dependent non-heme enzymes. Yoon S; Lippard SJ J Am Chem Soc; 2005 Jun; 127(23):8386-97. PubMed ID: 15941272 [TBL] [Abstract][Full Text] [Related]
12. Modeling dioxygen-activating centers in non-heme diiron enzymes: carboxylate shifts in diiron(II) complexes supported by sterically hindered carboxylate ligands. Lee D; Lippard SJ Inorg Chem; 2002 May; 41(10):2704-19. PubMed ID: 12005495 [TBL] [Abstract][Full Text] [Related]
13. Non-heme μ-Oxo- and bis(μ-carboxylato)-bridged diiron(iii) complexes of a 3N ligand as catalysts for alkane hydroxylation: stereoelectronic factors of carboxylate bridges determine the catalytic efficiency. Balamurugan M; Suresh E; Palaniandavar M Dalton Trans; 2016 Jul; 45(28):11422-36. PubMed ID: 27336757 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of a model complex for flavodiiron NO reductases that stabilizes a diiron mononitrosyl complex. Dong HT; Zong Y; Bracken AJ; Lengel MO; Kampf JW; Sil D; Krebs C; Lehnert N J Inorg Biochem; 2022 Apr; 229():111723. PubMed ID: 35074551 [TBL] [Abstract][Full Text] [Related]
16. Reaction of (mu-oxo)diiron(III) core with CO2 in N-methylimidazole: formation of mono(mu-carboxylato)(mu-oxo)diiron(III) complexes with N-methylimidazole as ligands. Marlin DS; Olmstead MM; Mascharak PK Inorg Chem; 2003 Mar; 42(5):1681-7. PubMed ID: 12611539 [TBL] [Abstract][Full Text] [Related]
17. Dinuclear first-row transition metal complexes with a naphthyridine-based dinucleating ligand. Davenport TC; Tilley TD Dalton Trans; 2015 Jul; 44(27):12244-55. PubMed ID: 25420206 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and characterization of Cu(2)(I,I), Cu(2)(I,II), and Cu(2)(II,II) compounds supported by two phthalazine-based ligands: influence of a hydrophobic pocket. Kuzelka J; Mukhopadhyay S; Spingler B; Lippard SJ Inorg Chem; 2004 Mar; 43(5):1751-61. PubMed ID: 14989668 [TBL] [Abstract][Full Text] [Related]
19. Synthesis, Characterization, and Crystal Structure of a (&mgr;-Oxo)bis(&mgr;-acetato)diiron(III) Complex with a Dinucleating Hexapyridine Ligand, 1,2-Bis[2-(bis(2-pyridyl)methyl)-6-pyridyl]ethane. The First Example of a Discrete (&mgr;-Oxo)bis(&mgr;-acetato)diiron(III) Complex with a Dinucleating Ligand. Kodera M; Shimakoshi H; Nishimura M; Okawa H; Iijima S; Kano K Inorg Chem; 1996 Aug; 35(17):4967-4973. PubMed ID: 11666701 [TBL] [Abstract][Full Text] [Related]