These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11262035)

  • 1. Heterocyclic volatiles formed by heating cysteine or hydrogen sulfide with 4-hydroxy-5-methyl-3(2H)-furanone at pH 6.5.
    Whitfield FB; Mottram DS
    J Agric Food Chem; 2001 Feb; 49(2):816-22. PubMed ID: 11262035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the reaction between 4-hydroxy-5-methyl-3(2H)-furanone and cysteine or hydrogen sulfide at pH 4.5.
    Whitfield FB; Mottram DS
    J Agric Food Chem; 1999 Apr; 47(4):1626-34. PubMed ID: 10564029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Temperature on Flavor Compounds and Sensory Characteristics of Maillard Reaction Products Derived from Mushroom Hydrolysate.
    Chen X; Yu J; Cui H; Xia S; Zhang X; Yang B
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29373560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of sulfur aroma compounds in reaction mixtures containing cysteine and three different forms of ribose.
    Mottram DS; Nobrega IC
    J Agric Food Chem; 2002 Jul; 50(14):4080-6. PubMed ID: 12083887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-intensity ultrasound production of Maillard reaction flavor compounds in a cysteine-xylose model system.
    Ong OXH; Seow YX; Ong PKC; Zhou W
    Ultrason Sonochem; 2015 Sep; 26():399-407. PubMed ID: 25640682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of aroma compounds from ribose and cysteine during the Maillard reaction.
    Cerny C; Davidek T
    J Agric Food Chem; 2003 Apr; 51(9):2714-21. PubMed ID: 12696962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-Transnitrosation reactions of hydrogen sulfide (H
    Tsikas D; Böhmer A
    Nitric Oxide; 2017 May; 65():22-36. PubMed ID: 28185882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of pH and temperature on the formation of volatile compounds in cysteine/reducing sugar/starch mixtures during extrusion cooking.
    Ames JM; Guy RC; Kipping GJ
    J Agric Food Chem; 2001 Apr; 49(4):1885-94. PubMed ID: 11308341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinvestigation of the reaction between 2-furancarboxaldehyde and 4-hydroxy-5-methyl-3(2H)-furanone.
    Ravagli A; Boschin G; Scaglioni L; Arnoldi A
    J Agric Food Chem; 1999 Dec; 47(12):4962-9. PubMed ID: 10606559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lard on the formation of volatiles from the Maillard reaction of cysteine with xylose.
    Xu Y; Chen Q; Lei S; Wu P; Fan G; Xu X; Pan S
    J Sci Food Agric; 2011 Sep; 91(12):2241-6. PubMed ID: 21618545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature and pH on the generation of flavor volatiles in extrusion cooking of wheat flour.
    Bredie WL; Mottram DS; Guy RC
    J Agric Food Chem; 2002 Feb; 50(5):1118-25. PubMed ID: 11853492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of carnosine on volatile generation from Maillard reaction of ribose and cysteine.
    Chen Y; Ho CT
    J Agric Food Chem; 2002 Apr; 50(8):2372-6. PubMed ID: 11929299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of urea on volatile generation from Maillard reaction of cysteine and ribose.
    Chen Y; Xing J; Chin CK; Ho CT
    J Agric Food Chem; 2000 Aug; 48(8):3512-6. PubMed ID: 10956141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heating and cysteine effect on physicochemical and flavor properties of soybean peptide Maillard reaction products.
    Zhang Z; Elfalleh W; He S; Tang M; Zhao J; Wu Z; Wang J; Sun H
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2137-2146. PubMed ID: 30223057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promoted Formation of Pyrazines and Sulfur-Containing Volatile Compounds through Interaction of Extra-Added Glutathione or Its Constituent Amino Acids and Secondary Products of Thermally Degraded
    Feng L; Cui H; Chen P; Hayat K; Zhang X; Ho CT
    J Agric Food Chem; 2022 Jul; 70(29):9095-9105. PubMed ID: 35838405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems.
    Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S
    Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of low molecular weight peptides (<1 kDa) in chicken meat and their contribution to meat flavor formation.
    Zhou R; Grant J; Goldberg EM; Ryland D; Aliani M
    J Sci Food Agric; 2019 Mar; 99(4):1728-1739. PubMed ID: 30226639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of 2-alkyl-(2H)-thiapyrans and 2-alkylthiophenes in cooked beef and lamb.
    Elmore JS; Mottram DS
    J Agric Food Chem; 2000 Jun; 48(6):2420-4. PubMed ID: 10888561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH, temperature, and moisture on the formation of volatile compounds in glycine/glucose model systems.
    Ames JM; Guy RC; Kipping GJ
    J Agric Food Chem; 2001 Sep; 49(9):4315-23. PubMed ID: 11559131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of solid phase-microextraction (SPME) and electronic nose techniques to differentiate volatiles of sesame oils prepared with diverse roasting conditions.
    Park MH; Jeong MK; Yeo J; Son HJ; Lim CL; Hong EJ; Noh BS; Lee J
    J Food Sci; 2011; 76(1):C80-8. PubMed ID: 21535659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.