These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 11262153)

  • 21. Enzyme activity electrophoresis: development and applications.
    Poulsen OM; Jacobsen T; Hau J; Jensen B; Vodder L; Andersen F
    Electrophoresis; 1989 Dec; 10(12):857-64. PubMed ID: 2693087
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Matrix metalloproteinase-1 takes advantage of the induced fit mechanism to cleave the triple-helical type I collagen molecule.
    O'Farrell TJ; Guo R; Hasegawa H; Pourmotabbed T
    Biochemistry; 2006 Dec; 45(51):15411-8. PubMed ID: 17176063
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Matrix metalloproteinase activity correlates with blastema formation in the regenerating MRL mouse ear hole model.
    Gourevitch D; Clark L; Chen P; Seitz A; Samulewicz SJ; Heber-Katz E
    Dev Dyn; 2003 Feb; 226(2):377-87. PubMed ID: 12557216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid crystal multiplexed protease assays reporting enzymatic activities as optical bar charts.
    Bi X; Lai SL; Yang KL
    Anal Chem; 2009 Jul; 81(13):5503-9. PubMed ID: 19492802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The dependence of MMP-2 and MMP-9 activity in wound fluid on the wound tissue state at initial stages of wound healing process].
    Protasov MV; Smagina LV; Galibin OV; Pinaev GP; Voronkina IV
    Tsitologiia; 2008; 50(10):882-6. PubMed ID: 19062521
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time zymography and reverse zymography: a method for detecting activities of matrix metalloproteinases and their inhibitors using FITC-labeled collagen and casein as substrates.
    Hattori S; Fujisaki H; Kiriyama T; Yokoyama T; Irie S
    Anal Biochem; 2002 Feb; 301(1):27-34. PubMed ID: 11811964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of preferred substrate sequences for transglutaminase 1--development of a novel peptide that can efficiently detect cross-linking enzyme activity in the skin.
    Sugimura Y; Hosono M; Kitamura M; Tsuda T; Yamanishi K; Maki M; Hitomi K
    FEBS J; 2008 Nov; 275(22):5667-77. PubMed ID: 18959752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The assay of tissue collagenase activity using fluorescein isothiocyanate labeled collagen].
    Ryzhakova OS; Solov'eva NI
    Biomed Khim; 2005; 51(4):432-8. PubMed ID: 16223032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Experimental substantiation of the use of proteolytic enzyme inhibitors for treatment of wounds].
    Synovets AS; Litvinov PG; Levitskii AP
    Klin Khir (1962); 1979 Jan; (1):12-6. PubMed ID: 312358
    [No Abstract]   [Full Text] [Related]  

  • 30. In vitro characterization of an in situ microdialysis sampling assay for elastase activity detection.
    Steuerwald AJ; Villeneuve JD; Sun L; Stenken JA
    J Pharm Biomed Anal; 2006 Mar; 40(5):1041-7. PubMed ID: 16242888
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A differential release of matrix metalloproteinases 9 and 2 during coronary artery bypass grafting and off-pump coronary artery bypass surgery.
    Sokal A; Zembala M; Radomski A; Kocher A; Pacholewicz J; Los J; Jedrzejczyk E; Zembala M; Radomski M
    J Thorac Cardiovasc Surg; 2009 May; 137(5):1218-24. PubMed ID: 19379995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upside-down transfer of porcine keratinocytes from a porous, synthetic dressing to experimental full-thickness wounds.
    van den Bogaerdt AJ; Ulrich MM; van Galen MJ; Reijnen L; Verkerk M; Pieper J; Lamme EN; Middelkoop E
    Wound Repair Regen; 2004; 12(2):225-34. PubMed ID: 15086774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell In Situ Zymography: Imaging Enzyme-Substrate Interactions.
    Chhabra A; Rani V
    Methods Mol Biol; 2017; 1626():133-143. PubMed ID: 28608206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorescent imaging and analysis with Typhoon 8600.
    McNamara P; Lew W; Han L
    Electrophoresis; 2001 Mar; 22(5):837-42. PubMed ID: 11332750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of matrix metalloproteinases and their endogenous tissue inhibitors in skin lesions from patients with tuberous sclerosis.
    Papakonstantinou E; Dionyssopoulos A; Aletras AJ; Pesintzaki C; Minas A; Karakiulakis G
    J Am Acad Dermatol; 2004 Oct; 51(4):526-33. PubMed ID: 15389186
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity profiling of human deSUMOylating enzymes (SENPs) with synthetic substrates suggests an unexpected specificity of two newly characterized members of the family.
    Drag M; Mikolajczyk J; Krishnakumar IM; Huang Z; Salvesen GS
    Biochem J; 2008 Jan; 409(2):461-9. PubMed ID: 17916063
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protease-specific nanosensors for magnetic resonance imaging.
    Schellenberger E; Rudloff F; Warmuth C; Taupitz M; Hamm B; Schnorr J
    Bioconjug Chem; 2008 Dec; 19(12):2440-5. PubMed ID: 19007261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical proteolytic beacon for detection of matrix metalloproteinase activities.
    Liu G; Wang J; Wunschel DS; Lin Y
    J Am Chem Soc; 2006 Sep; 128(38):12382-3. PubMed ID: 16984165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of bacterial proteases with a panel of fluorescent peptide substrates.
    Wildeboer D; Jeganathan F; Price RG; Abuknesha RA
    Anal Biochem; 2009 Jan; 384(2):321-8. PubMed ID: 18957278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Developing novel activity-based fluorescent probes that target different classes of proteases.
    Zhu Q; Girish A; Chattopadhaya S; Yao SQ
    Chem Commun (Camb); 2004 Jul; (13):1512-3. PubMed ID: 15216356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.