BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 11262920)

  • 1. Use of a simulation model and ecosystem flux data to examine carbon-water interactions in ponderosa pine.
    Williams M; Law BE; Anthoni PM; Unsworth MH
    Tree Physiol; 2001 Mar; 21(5):287-98. PubMed ID: 11262920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-related changes in ecosystem structure and function and effects on water and carbon exchange in ponderosa pine.
    Irvine J; Law BE; Kurpius MR; Anthoni PM; Moore D; Schwarz PA
    Tree Physiol; 2004 Jul; 24(7):753-63. PubMed ID: 15123447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution.
    Domec JC; Warren JM; Meinzer FC; Brooks JR; Coulombe R
    Oecologia; 2004 Sep; 141(1):7-16. PubMed ID: 15338263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of three approaches to modeling leaf gas exchange in annually drought-stressed ponderosa pine forests.
    Misson L; Panek JA; Goldstein AH
    Tree Physiol; 2004 May; 24(5):529-41. PubMed ID: 14996657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer.
    Law BE; Goldstein AH; Anthoni PM; Unsworth MH; Panek JA; Bauer MR; Fracheboud JM; Hultman N
    Tree Physiol; 2001 Mar; 21(5):299-308. PubMed ID: 11262921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth.
    Moreaux V; Lamaud E; Bosc A; Bonnefond JM; Medlyn BE; Loustau D
    Tree Physiol; 2011 Sep; 31(9):903-21. PubMed ID: 21724584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water limitations to carbon exchange in old-growth and young ponderosa pine stands.
    Irvine J; Law BE; Anthoni PM; Meinzer FC
    Tree Physiol; 2002 Feb; 22(2-3):189-96. PubMed ID: 11830415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests.
    Brooks JR; Meinzer FC; Coulombe R; Gregg J
    Tree Physiol; 2002 Nov; 22(15-16):1107-17. PubMed ID: 12414370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake.
    Panek JA; Goldstein AH
    Tree Physiol; 2001 Mar; 21(5):337-44. PubMed ID: 11262925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance.
    Duursma RA; Kolari P; Perämäki M; Nikinmaa E; Hari P; Delzon S; Loustau D; Ilvesniemi H; Pumpanen J; Mäkelä A
    Tree Physiol; 2008 Feb; 28(2):265-76. PubMed ID: 18055437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling.
    Panek JA
    Tree Physiol; 2004 Mar; 24(3):277-90. PubMed ID: 14704137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration thinning and influence of tree size and leaf area to sapwood area ratio on water relations of Pinus ponderosa.
    Simonin K; Kolb TE; Montes-Helu M; Koch GW
    Tree Physiol; 2006 Apr; 26(4):493-503. PubMed ID: 16414928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactive effects of CO2 and O3 on a ponderosa pine plant/litter/soil mesocosm.
    Olszyk DM; Johnson MG; Phillips DL; Seidler RJ; Tingey DT; Watrud LS
    Environ Pollut; 2001; 115(3):447-62. PubMed ID: 11789925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic redistribution of soil water by roots affects whole-stand evapotranspiration and net ecosystem carbon exchange.
    Domec JC; King JS; Noormets A; Treasure E; Gavazzi MJ; Sun G; McNulty SG
    New Phytol; 2010 Jul; 187(1):171-183. PubMed ID: 20406402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.
    Garcia MO; Smith JE; Luoma DL; Jones MD
    Mycorrhiza; 2016 May; 26(4):275-86. PubMed ID: 26547440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.
    Sala A; Peters GD; McIntyre LR; Harrington MG
    Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae).
    Eller CB; Burgess SS; Oliveira RS
    Tree Physiol; 2015 Apr; 35(4):387-99. PubMed ID: 25716877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests.
    Hungate BA; Hart SC; Selmants PC; Boyle SI; Gehring CA
    Ecol Appl; 2007 Jul; 17(5):1352-65. PubMed ID: 17708213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations.
    Domec JC; Ogée J; Noormets A; Jouangy J; Gavazzi M; Treasure E; Sun G; McNulty SG; King JS
    Tree Physiol; 2012 Jun; 32(6):707-23. PubMed ID: 22467712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest.
    Misson L; Gershenson A; Tang J; McKay M; Cheng W; Goldstein A
    Tree Physiol; 2006 Jul; 26(7):833-44. PubMed ID: 16585030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.