These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 11262934)
1. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Liu X; Brutlag DL; Liu JS Pac Symp Biocomput; 2001; ():127-38. PubMed ID: 11262934 [TBL] [Abstract][Full Text] [Related]
2. MOPAC: motif finding by preprocessing and agglomerative clustering from microarrays. Ganesh R; Siegele DA; Ioerger TR Pac Symp Biocomput; 2003; ():41-52. PubMed ID: 12603016 [TBL] [Abstract][Full Text] [Related]
3. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Liu XS; Brutlag DL; Liu JS Nat Biotechnol; 2002 Aug; 20(8):835-9. PubMed ID: 12101404 [TBL] [Abstract][Full Text] [Related]
4. Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals. Vanet A; Marsan L; Labigne A; Sagot MF J Mol Biol; 2000 Mar; 297(2):335-53. PubMed ID: 10715205 [TBL] [Abstract][Full Text] [Related]
5. A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes. Thijs G; Marchal K; Lescot M; Rombauts S; De Moor B; Rouzé P; Moreau Y J Comput Biol; 2002; 9(2):447-64. PubMed ID: 12015892 [TBL] [Abstract][Full Text] [Related]
6. Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites. Qin ZS; McCue LA; Thompson W; Mayerhofer L; Lawrence CE; Liu JS Nat Biotechnol; 2003 Apr; 21(4):435-9. PubMed ID: 12627170 [TBL] [Abstract][Full Text] [Related]
7. A Gibbs sampler for identification of symmetrically structured, spaced DNA motifs with improved estimation of the signal length. Favorov AV; Gelfand MS; Gerasimova AV; Ravcheev DA; Mironov AA; Makeev VJ Bioinformatics; 2005 May; 21(10):2240-5. PubMed ID: 15728117 [TBL] [Abstract][Full Text] [Related]
8. Identification of DNA regulatory motifs using Bayesian variable selection. Tadesse MG; Vannucci M; Liò P Bioinformatics; 2004 Nov; 20(16):2553-61. PubMed ID: 15117754 [TBL] [Abstract][Full Text] [Related]
9. Inferring gene regulatory relationships by combining target-target pattern recognition and regulator-specific motif examination. Wei H; Kaznessis Y Biotechnol Bioeng; 2005 Jan; 89(1):53-77. PubMed ID: 15540196 [TBL] [Abstract][Full Text] [Related]
10. A suite of web-based programs to search for transcriptional regulatory motifs. Liu Y; Wei L; Batzoglou S; Brutlag DL; Liu JS; Liu XS Nucleic Acids Res; 2004 Jul; 32(Web Server issue):W204-7. PubMed ID: 15215381 [TBL] [Abstract][Full Text] [Related]
11. Molecular analysis of the regulation of csiD, a carbon starvation-inducible gene in Escherichia coli that is exclusively dependent on sigma s and requires activation by cAMP-CRP. Marschall C; Labrousse V; Kreimer M; Weichart D; Kolb A; Hengge-Aronis R J Mol Biol; 1998 Feb; 276(2):339-53. PubMed ID: 9512707 [TBL] [Abstract][Full Text] [Related]
12. Mode of selectivity in cyclic AMP receptor protein-dependent promoters in Escherichia coli. Pyles EA; Lee JC Biochemistry; 1996 Jan; 35(4):1162-72. PubMed ID: 8573570 [TBL] [Abstract][Full Text] [Related]
13. Differential control by IHF and cAMP of two oppositely oriented genes, hpt and gcd, in Escherichia coli: significance of their partially overlapping regulatory elements. Izu H; Ito S; Elias MD; Yamada M Mol Genet Genomics; 2002 Jan; 266(5):865-72. PubMed ID: 11810262 [TBL] [Abstract][Full Text] [Related]
14. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Zheng D; Constantinidou C; Hobman JL; Minchin SD Nucleic Acids Res; 2004; 32(19):5874-93. PubMed ID: 15520470 [TBL] [Abstract][Full Text] [Related]
15. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. Hughes JD; Estep PW; Tavazoie S; Church GM J Mol Biol; 2000 Mar; 296(5):1205-14. PubMed ID: 10698627 [TBL] [Abstract][Full Text] [Related]
16. Regulatory motif finding by logic regression. Keles S; van der Laan MJ; Vulpe C Bioinformatics; 2004 Nov; 20(16):2799-811. PubMed ID: 15166027 [TBL] [Abstract][Full Text] [Related]
17. The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. Kohl TA; Baumbach J; Jungwirth B; Pühler A; Tauch A J Biotechnol; 2008 Jul; 135(4):340-50. PubMed ID: 18573287 [TBL] [Abstract][Full Text] [Related]
18. [Functional interrelationship between elements of the Escherichia coli udp gene promotor responsible for binding regulatory proteins CytR, CRP, and RNA polymerase]. Zolotukhina MA; Ovcharova IV; Eremina SIu; Erraĭs LL; Mironov AS Genetika; 2002 Sep; 38(9):1223-34. PubMed ID: 12391883 [TBL] [Abstract][Full Text] [Related]
19. Computational biology: toward deciphering gene regulatory information in mammalian genomes. Ji H; Wong WH Biometrics; 2006 Sep; 62(3):645-63. PubMed ID: 16984301 [TBL] [Abstract][Full Text] [Related]
20. Identification of modules in Aspergillus niger by gene co-expression network analysis. van den Berg RA; Braaksma M; van der Veen D; van der Werf MJ; Punt PJ; van der Oost J; de Graaff LH Fungal Genet Biol; 2010 Jun; 47(6):539-50. PubMed ID: 20350613 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]