These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11262951)

  • 1. A multithreaded parallel implementation of a dynamic programming algorithm for sequence comparison.
    Martins WS; Del Cuvillo JB; Useche FJ; Theobald KB; Gao GR
    Pac Symp Biocomput; 2001; ():311-22. PubMed ID: 11262951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications.
    D'Angelo G; Rampone S
    BMC Bioinformatics; 2014; 15 Suppl 5(Suppl 5):S2. PubMed ID: 25077818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PLAST: parallel local alignment search tool for database comparison.
    Nguyen VH; Lavenier D
    BMC Bioinformatics; 2009 Oct; 10():329. PubMed ID: 19821978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.
    Lan H; Chan Y; Xu K; Schmidt B; Peng S; Liu W
    BMC Bioinformatics; 2016 Jul; 17 Suppl 9(Suppl 9):267. PubMed ID: 27455061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Massively Parallel Implementation of Sequence Alignment with Basic Local Alignment Search Tool Using Parallel Computing in Java Library.
    Nowicki M; Bzhalava D; BaŁa P
    J Comput Biol; 2018 Aug; 25(8):871-881. PubMed ID: 30004240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FPGASW: Accelerating Large-Scale Smith-Waterman Sequence Alignment Application with Backtracking on FPGA Linear Systolic Array.
    Fei X; Dan Z; Lina L; Xin M; Chunlei Z
    Interdiscip Sci; 2018 Mar; 10(1):176-188. PubMed ID: 28432608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel computation and FASTA: confronting the problem of parallel database search for a fast sequence comparison algorithm.
    Miller PL; Nadkarni PM; Carriero NM
    Comput Appl Biosci; 1991 Jan; 7(1):71-8. PubMed ID: 2004277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimised fine and coarse parallelism for sequence homology search.
    Meng X; Chaudhary V
    Int J Bioinform Res Appl; 2006; 2(4):430-41. PubMed ID: 18048183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing machine-independent versus machine-specific parallelization of a software platform for biological sequence comparison.
    Miller PL; Nadkarni PM; Pearson WR
    Comput Appl Biosci; 1992 Apr; 8(2):167-75. PubMed ID: 1591612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine-grained parallelism accelerating for RNA secondary structure prediction with pseudoknots based on FPGA.
    Xia F; Jin G
    J Bioinform Comput Biol; 2014 Jun; 12(3):1450008. PubMed ID: 24969746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive study on iterative algorithms of multiple sequence alignment.
    Hirosawa M; Totoki Y; Hoshida M; Ishikawa M
    Comput Appl Biosci; 1995 Feb; 11(1):13-8. PubMed ID: 7796270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super pairwise alignment (SPA): an efficient approach to global alignment for homologous sequences.
    Shen SY; Yang J; Yao A; Hwang PI
    J Comput Biol; 2002; 9(3):477-86. PubMed ID: 12162887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallelization of a local similarity algorithm.
    Huang X; Miller W; Schwartz S; Hardison RC
    Comput Appl Biosci; 1992 Apr; 8(2):155-65. PubMed ID: 1591611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A greedy algorithm for aligning DNA sequences.
    Zhang Z; Schwartz S; Wagner L; Miller W
    J Comput Biol; 2000; 7(1-2):203-14. PubMed ID: 10890397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The practical use of the A* algorithm for exact multiple sequence alignment.
    Lermen M; Reinert K
    J Comput Biol; 2000; 7(5):655-71. PubMed ID: 11153092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconfigurable systems for sequence alignment and for general dynamic programming.
    Jacobi RP; Ayala-Rincón M; Carvalho LG; Llanos CH; Hartenstein RW
    Genet Mol Res; 2005 Sep; 4(3):543-52. PubMed ID: 16342039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple sequence alignment using simulated annealing.
    Kim J; Pramanik S; Chung MJ
    Comput Appl Biosci; 1994 Jul; 10(4):419-26. PubMed ID: 7804875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel Tiled Codes Implementing the Smith-Waterman Alignment Algorithm for Two and Three Sequences.
    Palkowski M; Bielecki W
    J Comput Biol; 2018 Oct; 25(10):1106-1119. PubMed ID: 29993269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple sequence alignment by parallel simulated annealing.
    Ishikawa M; Toya T; Hoshida M; Nitta K; Ogiwara A; Kanehisa M
    Comput Appl Biosci; 1993 Jun; 9(3):267-73. PubMed ID: 8324627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.