BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 11262978)

  • 1. Efficiencies of genes and accuracy of tree-building methods in recovering a known Drosophila genealogy.
    Steinbachs JE; Schizas NV; Ballard JW
    Pac Symp Biocomput; 2001; ():606-17. PubMed ID: 11262978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny.
    Russo CA; Takezaki N; Nei M
    Mol Biol Evol; 1996 Mar; 13(3):525-36. PubMed ID: 8742641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolving the phylogenetic relationships and evolutionary history of the Drosophila virilis group using multilocus data.
    Morales-Hojas R; Reis M; Vieira CP; Vieira J
    Mol Phylogenet Evol; 2011 Aug; 60(2):249-58. PubMed ID: 21571080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular phylogeny of the Drosophila tripunctata and closely related species groups (Diptera: Drosophilidae).
    Hatadani LM; McInerney JO; de Medeiros HF; Junqueira AC; de Azeredo-Espin AM; Klaczko LB
    Mol Phylogenet Evol; 2009 Jun; 51(3):595-600. PubMed ID: 19285146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data.
    Fenn JD; Song H; Cameron SL; Whiting MF
    Mol Phylogenet Evol; 2008 Oct; 49(1):59-68. PubMed ID: 18672078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined nuclear and mitochondrial DNA sequences resolve generic relationships within the Cracidae (Galliformes, Aves).
    Pereira SL; Baker AJ; Wajntal A
    Syst Biol; 2002 Dec; 51(6):946-58. PubMed ID: 12554460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from horseshoe bats (Rhinolophidae: Chiroptera).
    Dool SE; Puechmaille SJ; Foley NM; Allegrini B; Bastian A; Mutumi GL; Maluleke TG; Odendaal LJ; Teeling EC; Jacobs DS
    Mol Phylogenet Evol; 2016 Apr; 97():196-212. PubMed ID: 26826601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic analysis using parsimony and likelihood methods.
    Yang Z
    J Mol Evol; 1996 Feb; 42(2):294-307. PubMed ID: 8919881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Boolean analysis and standard phylogenetic methods using artificially evolved and natural mt-tRNA sequences from great apes.
    Ari E; Ittzés P; Podani J; Thi QC; Jakó E
    Mol Phylogenet Evol; 2012 Apr; 63(1):193-202. PubMed ID: 22289866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular systematics of the Eastern Fence Lizard (Sceloporus undulatus): a comparison of Parsimony, Likelihood, and Bayesian approaches.
    Leaché AD; Reeder TW
    Syst Biol; 2002 Feb; 51(1):44-68. PubMed ID: 11943092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular phylogeny of the carnivora (mammalia): assessing the impact of increased sampling on resolving enigmatic relationships.
    Flynn JJ; Finarelli JA; Zehr S; Hsu J; Nedbal MA
    Syst Biol; 2005 Apr; 54(2):317-37. PubMed ID: 16012099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species trees for the tree swallows (Genus Tachycineta): an alternative phylogenetic hypothesis to the mitochondrial gene tree.
    Dor R; Carling MD; Lovette IJ; Sheldon FH; Winkler DW
    Mol Phylogenet Evol; 2012 Oct; 65(1):317-22. PubMed ID: 22750631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of tree-building methods using a morphological dataset and a well-supported Hexapoda phylogeny.
    Francisco Barbosa F; Mermudes JRM; Russo CAM
    PeerJ; 2024; 12():e16706. PubMed ID: 38213769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data partitions and complex models in Bayesian analysis: the phylogeny of Gymnophthalmid lizards.
    Castoe TA; Doan TM; Parkinson CL
    Syst Biol; 2004 Jun; 53(3):448-69. PubMed ID: 15503673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving deep phylogenetic relationships in salamanders: analyses of mitochondrial and nuclear genomic data.
    Weisrock DW; Harmon LJ; Larson A
    Syst Biol; 2005 Oct; 54(5):758-77. PubMed ID: 16243763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An expanded phylogeny of treefrogs (Hylidae) based on nuclear and mitochondrial sequence data.
    Wiens JJ; Kuczynski CA; Hua X; Moen DS
    Mol Phylogenet Evol; 2010 Jun; 55(3):871-82. PubMed ID: 20304077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penalized likelihood phylogenetic inference: bridging the parsimony-likelihood gap.
    Kim J; Sanderson MJ
    Syst Biol; 2008 Oct; 57(5):665-74. PubMed ID: 18853355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the phylogenetic signal limit from mitogenomes, slow evolving nuclear genes, and the concatenation approach. New insights into the Lacertini radiation using fast evolving nuclear genes and species trees.
    Mendes J; Harris DJ; Carranza S; Salvi D
    Mol Phylogenet Evol; 2016 Jul; 100():254-267. PubMed ID: 27095169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular phylogeny and host use evolution of the genus Exorista Meigen (Diptera: Tachinidae).
    Tachi T
    Mol Phylogenet Evol; 2013 Jan; 66(1):401-11. PubMed ID: 23123315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary history of Ramphastos toucans: molecular phylogenetics, temporal diversification, and biogeography.
    Patané JS; Weckstein JD; Aleixo A; Bates JM
    Mol Phylogenet Evol; 2009 Dec; 53(3):923-34. PubMed ID: 19699308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.