These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11263229)

  • 41. Stimulus ratio dependence of low-frequency distortion-product otoacoustic emissions in humans.
    Christensen AT; Ordoñez R; Hammershøi D
    J Acoust Soc Am; 2015 Feb; 137(2):679-89. PubMed ID: 25698003
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects.
    Moulin A; Collet L; Veuillet E; Morgon A
    Hear Res; 1993 Feb; 65(1-2):216-33. PubMed ID: 8458753
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of spontaneous otoacoustic emissions on distortion product otoacoustic emission amplitudes.
    Ozturan O; Oysu C
    Hear Res; 1999 Jan; 127(1-2):129-36. PubMed ID: 9925024
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimum primary tone level setting for measuring high amplitude DPOAEs in guinea pigs.
    Michaelis CE; Gehr DD; Deingruber K; Arnold W; Lamm K
    Hear Res; 2004 Mar; 189(1-2):58-62. PubMed ID: 14987752
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hearing threshold estimation using concurrent measurement of distortion product otoacoustic emissions and auditory steady-state responses.
    Rosner T; Kandzia F; Oswald JA; Janssen T
    J Acoust Soc Am; 2011 Feb; 129(2):840-51. PubMed ID: 21361442
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice.
    Varghese GI; Zhu X; Frisina RD
    Hear Res; 2005 Nov; 209(1-2):60-7. PubMed ID: 16061336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils.
    Mills DM
    J Acoust Soc Am; 2000 May; 107(5 Pt 1):2586-602. PubMed ID: 10830382
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cochlear generation of intermodulation distortion revealed by DPOAE frequency functions in normal and impaired ears.
    Stover LJ; Neely ST; Gorga MP
    J Acoust Soc Am; 1999 Nov; 106(5):2669-78. PubMed ID: 10573884
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects.
    Dalhoff E; Turcanu D; Zenner HP; Gummer AW
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1546-51. PubMed ID: 17242353
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Distortion product otoacoustic emission (DPOAEs) and newborn hearing screening: a feasibility and performance study].
    Pelosi G; Hatzopoulos S; Chierici R; Vigi V; Martini A
    Acta Otorhinolaryngol Ital; 2000 Aug; 20(4):237-44. PubMed ID: 11234441
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in distortion product otoacoustic emissions from ears with Menière's disease.
    Kusuki M; Sakashita T; Kubo T; Kyunai K; Ueno K; Hikawa C; Wada T; Nakai Y
    Acta Otolaryngol Suppl; 1998; 538():78-89. PubMed ID: 9879406
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Age-related changes in transiently evoked otoacoustic emissions and distortion product otoacoustic emissions in normal-hearing ears.
    Satoh Y; Kanzaki J; O-Uchi T; Yoshihara S
    Auris Nasus Larynx; 1998 May; 25(2):121-30. PubMed ID: 9673723
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Distortion product otoacoustic emissions in infants from birth to two months].
    Pinto VS; Lewis DR
    Pro Fono; 2007; 19(2):195-204. PubMed ID: 17710346
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Suppression of the 2f1-f2 otoacoustic emission in humans.
    Harris FP; Probst R; Xu L
    Hear Res; 1992 Dec; 64(1):133-41. PubMed ID: 1490896
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Spontaneous otoacoustic emissions and efferent control of cochlea].
    Xu J; Liu C; Guo L; Lian N; Liu B
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Dec; 36(6):436-40. PubMed ID: 12761959
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dependence of distortion-product otoacoustic emissions on primary levels in normal and impaired ears. II. Asymmetry in L1,L2 space.
    Whitehead ML; Stagner BB; McCoy MJ; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1995 Apr; 97(4):2359-77. PubMed ID: 7714255
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of sample size on the noise floor and distortion product otoacoustic emissions.
    Beattie RC; Ireland A
    Scand Audiol; 2000; 29(2):93-102. PubMed ID: 10888346
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Relationship between distortion product otoacoustic emissions and frequency discrimination in normal-hearing and hearing-impaired ears].
    Tanaka Y
    Nihon Jibiinkoka Gakkai Kaiho; 1996 Jan; 99(1):65-78. PubMed ID: 8822256
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit. II: Differential physiological vulnerability.
    Whitehead ML; Lonsbury-Martin BL; Martin GK
    J Acoust Soc Am; 1992 Nov; 92(5):2662-82. PubMed ID: 1479129
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gender effects on high frequency distortion product otoacoustic emissions in humans.
    Dunckley KT; Dreisbach LE
    Ear Hear; 2004 Dec; 25(6):554-64. PubMed ID: 15604916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.