These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1126412)

  • 61. Effects of neonatally induced strabismus on binocular responses in cat area 18.
    Cynader M; Gardner JC; Mustari M
    Exp Brain Res; 1984; 53(2):384-99. PubMed ID: 6705870
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of the duration of early strabismus on the binocular responses of neurons in the monkey visual cortex (V1).
    Mori T; Matsuura K; Zhang B; Smith EL; Chino YM
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):1262-9. PubMed ID: 11923274
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation.
    Duffy KR; Bukhamseen DH; Smithen MJ; Mitchell DE
    Vision Res; 2015 Sep; 114():151-60. PubMed ID: 25536470
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cortical effects of brief daily periods of unrestricted vision during early monocular form deprivation.
    Sakai E; Bi H; Maruko I; Zhang B; Zheng J; Wensveen J; Harwerth RS; Smith EL; Chino YM
    J Neurophysiol; 2006 May; 95(5):2856-65. PubMed ID: 16452254
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Binocular summation in normal and stereoblind humans.
    Lema SA; Blake R
    Vision Res; 1977; 17(6):691-5. PubMed ID: 602028
    [No Abstract]   [Full Text] [Related]  

  • 66. Binocular pattern deprivation with delayed onset has impact on motion perception in adulthood.
    Zapasnik M; Burnat K
    Neuroscience; 2013; 255():99-109. PubMed ID: 24120559
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Excitatory binocular interactions in two cases of alternating strabismus.
    Goodman LK; Black JM; Phillips G; Hess RF; Thompson B
    J AAPOS; 2011 Aug; 15(4):345-9. PubMed ID: 21907116
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A pilot study for investigating cortical binocularity in humans using fMRI adaptation.
    Jurcoane A; Choubey B; Muckli L; Sireteanu R
    Strabismus; 2007; 15(1):33-7. PubMed ID: 17523044
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.
    Mower GD; Caplan CJ; Christen WG; Duffy FH
    J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neural representation of motion-in-depth in area MT.
    Sanada TM; DeAngelis GC
    J Neurosci; 2014 Nov; 34(47):15508-21. PubMed ID: 25411481
    [TBL] [Abstract][Full Text] [Related]  

  • 71. An objective indicant of binocular vision in humans: size-specific interocular suppression of visual evoked potentials.
    Harter MR; Towle VL; Zakrzewski M; Moyer SM
    Electroencephalogr Clin Neurophysiol; 1977 Dec; 43(6):825-36. PubMed ID: 73450
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Clinical Assessment of Stereoacuity and 3-D Stereoscopic Entertainment.
    Tidbury LP; Black RH; O'Connor AR
    Strabismus; 2015; 23(4):164-9. PubMed ID: 26669421
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Joint-encoding of motion and depth by visual cortical neurons: neural basis of the Pulfrich effect.
    Anzai A; Ohzawa I; Freeman RD
    Nat Neurosci; 2001 May; 4(5):513-8. PubMed ID: 11319560
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Interocular transfer of visual aftereffects.
    Blake R; Overton R; Lema-Stern S
    J Exp Psychol Hum Percept Perform; 1981 Apr; 7(2):367-81. PubMed ID: 6453930
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Motion aftereffect transfer in the monofixation syndrome.
    Price RL; Keck MJ
    J Pediatr Ophthalmol Strabismus; 1982; 19(2):69-74. PubMed ID: 7097463
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Ocular contributions to age-related loss in coarse stereopsis.
    Schneck ME; Haegerstrom-Portnoy G; Lott LA; Brabyn JA
    Optom Vis Sci; 2000 Oct; 77(10):531-6. PubMed ID: 11100891
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [The adaption to the monocular depth-perception. 3. The influence of the age at the time of loss of binocular vision].
    Pape R; Immich H; Mazur K
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1969; 179(1):49-52. PubMed ID: 5309742
    [No Abstract]   [Full Text] [Related]  

  • 78. Two independent mechanisms for motion-in-depth perception: evidence from individual differences.
    Nefs HT; O'Hare L; Harris JM
    Front Psychol; 2010; 1():155. PubMed ID: 21833221
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The adaption to the monocular depth-perception. II. A quantitative comparison of monocular and binocular test-persons.
    Pape R; Immich H; Stern G
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1969; 179(1):41-8. PubMed ID: 5309741
    [No Abstract]   [Full Text] [Related]  

  • 80. Sensory Eye Dominance: Relationship Between Eye and Brain.
    Ooi TL; He ZJ
    Eye Brain; 2020; 12():25-31. PubMed ID: 32021530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.