BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 11264292)

  • 1. Control of electron transfer in nitric-oxide synthases. Swapping of autoinhibitory elements among nitric-oxide synthase isoforms.
    Nishida CR; de Montellano PR
    J Biol Chem; 2001 Jun; 276(23):20116-24. PubMed ID: 11264292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autoinhibition of endothelial nitric-oxide synthase. Identification of an electron transfer control element.
    Nishida CR; Ortiz de Montellano PR
    J Biol Chem; 1999 May; 274(21):14692-8. PubMed ID: 10329664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer.
    Daff S; Sagami I; Shimizu T
    J Biol Chem; 1999 Oct; 274(43):30589-95. PubMed ID: 10521442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric-oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin-dependent activity.
    Knudsen GM; Nishida CR; Mooney SD; Ortiz de Montellano PR
    J Biol Chem; 2003 Aug; 278(34):31814-24. PubMed ID: 12805387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras.
    Newman E; Spratt DE; Mosher J; Cheyne B; Montgomery HJ; Wilson DL; Weinberg JB; Smith SM; Salerno JC; Ghosh DK; Guillemette JG
    J Biol Chem; 2004 Aug; 279(32):33547-57. PubMed ID: 15138276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeras of nitric-oxide synthase types I and III establish fundamental correlates between heme reduction, heme-NO complex formation, and catalytic activity.
    Adak S; Aulak KS; Stuehr DJ
    J Biol Chem; 2001 Jun; 276(26):23246-52. PubMed ID: 11313363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences.
    Roman LJ; McLain J; Masters BS
    J Biol Chem; 2003 Jul; 278(28):25700-7. PubMed ID: 12730215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of electron transfer in neuronal NO synthase.
    Daff S; Noble MA; Craig DH; Rivers SL; Chapman SK; Munro AW; Fujiwara S; Rozhkova E; Sagami I; Shimizu T
    Biochem Soc Trans; 2001 May; 29(Pt 2):147-52. PubMed ID: 11356143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase.
    Chen PF; Wu KK
    J Biol Chem; 2003 Dec; 278(52):52392-400. PubMed ID: 14561757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer and catalytic activity of nitric oxide synthases. Chimeric constructs of the neuronal, inducible, and endothelial isoforms.
    Nishida CR; Ortiz de Montellano PR
    J Biol Chem; 1998 Mar; 273(10):5566-71. PubMed ID: 9488682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases.
    Feng C; Chen L; Li W; Elmore BO; Fan W; Sun X
    J Inorg Biochem; 2014 Jan; 130():130-40. PubMed ID: 24084585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced amide bond peptidomimetics. (4S)-N-(4-amino-5-[aminoakyl]aminopentyl)-N'-nitroguanidines, potent and highly selective inhibitors of neuronal nitric oxide synthase.
    Hah JM; Roman LJ; Martásek P; Silverman RB
    J Med Chem; 2001 Aug; 44(16):2667-70. PubMed ID: 11472219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of caveolin-1-interacting sites in neuronal nitric-oxide synthase. Molecular mechanism for inhibition of NO formation.
    Sato Y; Sagami I; Shimizu T
    J Biol Chem; 2004 Mar; 279(10):8827-36. PubMed ID: 14681230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the roles of the 594-645 region in human endothelial nitric-oxide synthase in regulating calmodulin binding and electron transfer.
    Chen PF; Wu KK
    J Biol Chem; 2000 Apr; 275(17):13155-63. PubMed ID: 10777622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of a conserved serine residue within hydrogen bonding distance of FAD in redox properties and the modulation of catalysis by Ca2+/calmodulin of constitutive nitric-oxide synthases.
    Panda SP; Gao YT; Roman LJ; Martásek P; Salerno JC; Masters BS
    J Biol Chem; 2006 Nov; 281(45):34246-57. PubMed ID: 16966328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reductase domain of the human inducible nitric oxide synthase is fully active in the absence of bound calmodulin.
    Newton DC; Montgomery HJ; Guillemette JG
    Arch Biochem Biophys; 1998 Nov; 359(2):249-57. PubMed ID: 9808767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal nitric-oxide synthase interaction with calmodulin-troponin C chimeras.
    Gachhui R; Abu-Soud HM; Ghosha DK; Presta A; Blazing MA; Mayer B; George SE; Stuehr DJ
    J Biol Chem; 1998 Mar; 273(10):5451-4. PubMed ID: 9488666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of reductase domain cluster 1 acidic residues in neuronal nitric-oxide synthase. Characterization of the FMN-FREE enzyme.
    Adak S; Ghosh S; Abu-Soud HM; Stuehr DJ
    J Biol Chem; 1999 Aug; 274(32):22313-20. PubMed ID: 10428800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding kinetics of calmodulin with target peptides of three nitric oxide synthase isozymes.
    Wu G; Berka V; Tsai AL
    J Inorg Biochem; 2011 Sep; 105(9):1226-37. PubMed ID: 21763233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intra-subunit and inter-subunit electron transfer in neuronal nitric-oxide synthase: effect of calmodulin on heterodimer catalysis.
    Sagami I; Daff S; Shimizu T
    J Biol Chem; 2001 Aug; 276(32):30036-42. PubMed ID: 11395516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.