These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 11264292)
1. Control of electron transfer in nitric-oxide synthases. Swapping of autoinhibitory elements among nitric-oxide synthase isoforms. Nishida CR; de Montellano PR J Biol Chem; 2001 Jun; 276(23):20116-24. PubMed ID: 11264292 [TBL] [Abstract][Full Text] [Related]
2. Autoinhibition of endothelial nitric-oxide synthase. Identification of an electron transfer control element. Nishida CR; Ortiz de Montellano PR J Biol Chem; 1999 May; 274(21):14692-8. PubMed ID: 10329664 [TBL] [Abstract][Full Text] [Related]
3. The 42-amino acid insert in the FMN domain of neuronal nitric-oxide synthase exerts control over Ca(2+)/calmodulin-dependent electron transfer. Daff S; Sagami I; Shimizu T J Biol Chem; 1999 Oct; 274(43):30589-95. PubMed ID: 10521442 [TBL] [Abstract][Full Text] [Related]
4. Nitric-oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin-dependent activity. Knudsen GM; Nishida CR; Mooney SD; Ortiz de Montellano PR J Biol Chem; 2003 Aug; 278(34):31814-24. PubMed ID: 12805387 [TBL] [Abstract][Full Text] [Related]
5. Differential activation of nitric-oxide synthase isozymes by calmodulin-troponin C chimeras. Newman E; Spratt DE; Mosher J; Cheyne B; Montgomery HJ; Wilson DL; Weinberg JB; Smith SM; Salerno JC; Ghosh DK; Guillemette JG J Biol Chem; 2004 Aug; 279(32):33547-57. PubMed ID: 15138276 [TBL] [Abstract][Full Text] [Related]
6. Chimeras of nitric-oxide synthase types I and III establish fundamental correlates between heme reduction, heme-NO complex formation, and catalytic activity. Adak S; Aulak KS; Stuehr DJ J Biol Chem; 2001 Jun; 276(26):23246-52. PubMed ID: 11313363 [TBL] [Abstract][Full Text] [Related]
7. Chimeric enzymes of cytochrome P450 oxidoreductase and neuronal nitric-oxide synthase reductase domain reveal structural and functional differences. Roman LJ; McLain J; Masters BS J Biol Chem; 2003 Jul; 278(28):25700-7. PubMed ID: 12730215 [TBL] [Abstract][Full Text] [Related]
8. Control of electron transfer in neuronal NO synthase. Daff S; Noble MA; Craig DH; Rivers SL; Chapman SK; Munro AW; Fujiwara S; Rozhkova E; Sagami I; Shimizu T Biochem Soc Trans; 2001 May; 29(Pt 2):147-52. PubMed ID: 11356143 [TBL] [Abstract][Full Text] [Related]
9. Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase. Chen PF; Wu KK J Biol Chem; 2003 Dec; 278(52):52392-400. PubMed ID: 14561757 [TBL] [Abstract][Full Text] [Related]
10. Electron transfer and catalytic activity of nitric oxide synthases. Chimeric constructs of the neuronal, inducible, and endothelial isoforms. Nishida CR; Ortiz de Montellano PR J Biol Chem; 1998 Mar; 273(10):5566-71. PubMed ID: 9488682 [TBL] [Abstract][Full Text] [Related]
11. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases. Feng C; Chen L; Li W; Elmore BO; Fan W; Sun X J Inorg Biochem; 2014 Jan; 130():130-40. PubMed ID: 24084585 [TBL] [Abstract][Full Text] [Related]
12. Reduced amide bond peptidomimetics. (4S)-N-(4-amino-5-[aminoakyl]aminopentyl)-N'-nitroguanidines, potent and highly selective inhibitors of neuronal nitric oxide synthase. Hah JM; Roman LJ; Martásek P; Silverman RB J Med Chem; 2001 Aug; 44(16):2667-70. PubMed ID: 11472219 [TBL] [Abstract][Full Text] [Related]
13. Identification of caveolin-1-interacting sites in neuronal nitric-oxide synthase. Molecular mechanism for inhibition of NO formation. Sato Y; Sagami I; Shimizu T J Biol Chem; 2004 Mar; 279(10):8827-36. PubMed ID: 14681230 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the roles of the 594-645 region in human endothelial nitric-oxide synthase in regulating calmodulin binding and electron transfer. Chen PF; Wu KK J Biol Chem; 2000 Apr; 275(17):13155-63. PubMed ID: 10777622 [TBL] [Abstract][Full Text] [Related]
15. The role of a conserved serine residue within hydrogen bonding distance of FAD in redox properties and the modulation of catalysis by Ca2+/calmodulin of constitutive nitric-oxide synthases. Panda SP; Gao YT; Roman LJ; Martásek P; Salerno JC; Masters BS J Biol Chem; 2006 Nov; 281(45):34246-57. PubMed ID: 16966328 [TBL] [Abstract][Full Text] [Related]
16. The reductase domain of the human inducible nitric oxide synthase is fully active in the absence of bound calmodulin. Newton DC; Montgomery HJ; Guillemette JG Arch Biochem Biophys; 1998 Nov; 359(2):249-57. PubMed ID: 9808767 [TBL] [Abstract][Full Text] [Related]
17. Neuronal nitric-oxide synthase interaction with calmodulin-troponin C chimeras. Gachhui R; Abu-Soud HM; Ghosha DK; Presta A; Blazing MA; Mayer B; George SE; Stuehr DJ J Biol Chem; 1998 Mar; 273(10):5451-4. PubMed ID: 9488666 [TBL] [Abstract][Full Text] [Related]
18. Role of reductase domain cluster 1 acidic residues in neuronal nitric-oxide synthase. Characterization of the FMN-FREE enzyme. Adak S; Ghosh S; Abu-Soud HM; Stuehr DJ J Biol Chem; 1999 Aug; 274(32):22313-20. PubMed ID: 10428800 [TBL] [Abstract][Full Text] [Related]
19. Binding kinetics of calmodulin with target peptides of three nitric oxide synthase isozymes. Wu G; Berka V; Tsai AL J Inorg Biochem; 2011 Sep; 105(9):1226-37. PubMed ID: 21763233 [TBL] [Abstract][Full Text] [Related]
20. Intra-subunit and inter-subunit electron transfer in neuronal nitric-oxide synthase: effect of calmodulin on heterodimer catalysis. Sagami I; Daff S; Shimizu T J Biol Chem; 2001 Aug; 276(32):30036-42. PubMed ID: 11395516 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]