These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 11264308)

  • 1. Synapse formation is arrested in retinal photoreceptors of the zebrafish nrc mutant.
    Allwardt BA; Lall AB; Brockerhoff SE; Dowling JE
    J Neurosci; 2001 Apr; 21(7):2330-42. PubMed ID: 11264308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lazy eyes zebrafish mutation affects Müller glial cells, compromising photoreceptor function and causing partial blindness.
    Kainz PM; Adolph AR; Wong KY; Dowling JE
    J Comp Neurol; 2003 Aug; 463(3):265-80. PubMed ID: 12820161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synaptic ultrastructure in the outer plexiform layer of the catfish retina: a three-dimensional study with HVEM and conventional EM of Golgi-impregnated bipolar and horizontal cells.
    Hidaka S; Christensen BN; Naka K
    J Comp Neurol; 1986 May; 247(2):181-99. PubMed ID: 2424939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of the distal retina of the adult zebrafish, Danio rerio.
    Tarboush R; Chapman GB; Connaughton VP
    Tissue Cell; 2012 Aug; 44(4):264-79. PubMed ID: 22608306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carboxypeptidase E is required for normal synaptic transmission from photoreceptors to the inner retina.
    Zhu X; Wu K; Rife L; Cawley NX; Brown B; Adams T; Teofilo K; Lillo C; Williams DS; Loh YP; Craft CM
    J Neurochem; 2005 Dec; 95(5):1351-62. PubMed ID: 16219026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations of photoreceptor synaptic transmission and light adaptation in the zebrafish visual mutant nrc.
    Van Epps HA; Yim CM; Hurley JB; Brockerhoff SE
    Invest Ophthalmol Vis Sci; 2001 Mar; 42(3):868-74. PubMed ID: 11222552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina.
    Nelson R; Kolb H
    Vision Res; 1983; 23(10):1183-95. PubMed ID: 6649437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cone synapses with Golgi-stained bipolar cells that are morphologically similar to a center-hyperpolarizing and a center-depolarizing bipolar cell type in the turtle retina.
    Kolb H; Wang HH; Jones J
    J Comp Neurol; 1986 Aug; 250(4):510-20. PubMed ID: 2428846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The neuronal organization of the outer plexiform layer of the primate retina.
    Mariani AP
    Int Rev Cytol; 1984; 86():285-320. PubMed ID: 6368448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cone synapses of DB1 diffuse, DB6 diffuse and invaginating midget, bipolar cells of a primate retina.
    Hopkins JM; Boycott BB
    J Neurocytol; 1996 Jul; 25(7):381-90. PubMed ID: 8866239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
    Johnson JE; Perkins GA; Giddabasappa A; Chaney S; Xiao W; White AD; Brown JM; Waggoner J; Ellisman MH; Fox DA
    Mol Vis; 2007 Jun; 13():887-919. PubMed ID: 17653034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OFF ganglion cells cannot drive the optokinetic reflex in zebrafish.
    Emran F; Rihel J; Adolph AR; Wong KY; Kraves S; Dowling JE
    Proc Natl Acad Sci U S A; 2007 Nov; 104(48):19126-31. PubMed ID: 18025459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormalities of the photoreceptor-bipolar cell synapse in a substrain of C57BL/10 mice.
    Ruether K; Grosse J; Matthiessen E; Hoffmann K; Hartmann C
    Invest Ophthalmol Vis Sci; 2000 Nov; 41(12):4039-47. PubMed ID: 11053310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and localization of an immunoreactive AMPA-type glutamate receptor subunit (GluR4) with respect to identified photoreceptor synapses in the outer plexiform layer of goldfish retina.
    Schultz K; Goldman DJ; Ohtsuka T; Hirano J; Barton L; Stell WK
    J Neurocytol; 1997 Oct; 26(10):651-66. PubMed ID: 9368879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of wrb, a Component of the Guided Entry of Tail-Anchored Protein Pathway, Disrupts Photoreceptor Synapse Structure and Function.
    Daniele LL; Emran F; Lobo GP; Gaivin RJ; Perkins BD
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):2942-54. PubMed ID: 27273592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic plasticity and functionality at the cone terminal of the developing zebrafish retina.
    Biehlmaier O; Neuhauss SC; Kohler K
    J Neurobiol; 2003 Sep; 56(3):222-36. PubMed ID: 12884262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells.
    Kolb H
    Philos Trans R Soc Lond B Biol Sci; 1970 May; 258(823):261-83. PubMed ID: 22408829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A diffuse, invaginating cone bipolar cell in primate retina.
    Mariani AP
    J Comp Neurol; 1981 Apr; 197(4):661-71. PubMed ID: 6262388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The zebrafish nrc mutant reveals a role for the polyphosphoinositide phosphatase synaptojanin 1 in cone photoreceptor ribbon anchoring.
    Van Epps HA; Hayashi M; Lucast L; Stearns GW; Hurley JB; De Camilli P; Brockerhoff SE
    J Neurosci; 2004 Oct; 24(40):8641-50. PubMed ID: 15470129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pineal gland in wild-type and two zebrafish mutants with retinal defects.
    Allwardt BA; Dowling JE
    J Neurocytol; 2001 Jun; 30(6):493-501. PubMed ID: 12037465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.