BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11264317)

  • 1. In vitro eye-blink classical conditioning is NMDA receptor dependent and involves redistribution of AMPA receptor subunit GluR4.
    Keifer J
    J Neurosci; 2001 Apr; 21(7):2434-41. PubMed ID: 11264317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro classical conditioning of the turtle eyeblink reflex: approaching cellular mechanisms of acquisition.
    Keifer J
    Cerebellum; 2003; 2(1):55-61. PubMed ID: 12882235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abducens conditioning in in vitro turtle brain stem without cerebellum requires NMDA receptors and involves upregulation of GluR4-containing AMPA receptors.
    Keifer J; Clark TG
    Exp Brain Res; 2003 Aug; 151(3):405-10. PubMed ID: 12802552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting of GLUR4-containing AMPA receptors to synaptic sites during in vitro classical conditioning.
    Mokin M; Keifer J
    Neuroscience; 2004; 128(2):219-28. PubMed ID: 15350635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of silent synapses into the active pool by selective GluR1-3 and GluR4 AMPAR trafficking during in vitro classical conditioning.
    Mokin M; Zheng Z; Keifer J
    J Neurophysiol; 2007 Sep; 98(3):1278-86. PubMed ID: 17596423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role for calbindin-D28K in in vitro classical conditioning of abducens nerve responses in turtles.
    Keifer J; Brewer BT; Meehan PE; Brue RJ; Clark TG
    Synapse; 2003 Aug; 49(2):106-15. PubMed ID: 12740866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro eye-blink reflex model: role of excitatory amino acids and labeling of network activity with sulforhodamine.
    Keifer J
    Exp Brain Res; 1993; 97(2):239-53. PubMed ID: 7908648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PKA has a critical role in synaptic delivery of GluR1- and GluR4-containing AMPARs during initial stages of acquisition of in vitro classical conditioning.
    Zheng Z; Keifer J
    J Neurophysiol; 2009 May; 101(5):2539-49. PubMed ID: 19261706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro classical conditioning of abducens nerve discharge in turtles.
    Keifer J; Armstrong KE; Houk JC
    J Neurosci; 1995 Jul; 15(7 Pt 1):5036-48. PubMed ID: 7623132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathways controlling trigeminal and auditory nerve-evoked abducens eyeblink reflexes in pond turtles.
    Zhu D; Keifer J
    Brain Behav Evol; 2004; 64(4):207-22. PubMed ID: 15319552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of conditioned abducens nerve responses in a highly reduced in vitro brain stem preparation from the turtle.
    Anderson CW; Keifer J
    J Neurophysiol; 1999 Mar; 81(3):1242-50. PubMed ID: 10085351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subunit-specific synaptic delivery of AMPA receptors by auxiliary chaperone proteins TARPĪ³8 and GSG1L in classical conditioning.
    Keifer J; Tiwari NK; Buse L; Zheng Z
    Neurosci Lett; 2017 Apr; 645():53-59. PubMed ID: 28219790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cerebellum and red nucleus are not required for In vitro classical conditioning of the turtle abducens nerve response.
    Anderson CW; Keifer J
    J Neurosci; 1997 Dec; 17(24):9736-45. PubMed ID: 9391026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunocytochemical localization of glutamate receptor subunits in the brain stem and cerebellum of the turtle Chrysemys picta.
    Keifer J; Carr MT
    J Comp Neurol; 2000 Nov; 427(3):455-68. PubMed ID: 11054706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central trigeminal and posterior eighth nerve projections in the turtle Chrysemys picta studied in vitro.
    Herrick JL; Keifer J
    Brain Behav Evol; 1998; 51(4):183-201. PubMed ID: 9553692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective changes in AMPA receptors in rabbit cerebellum following classical conditioning of the eyelid-nictitating membrane response.
    Hauge SA; Tracy JA; Baudry M; Thompson RF
    Brain Res; 1998 Aug; 803(1-2):9-18. PubMed ID: 9729243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immediate-early gene-encoded protein Arc is associated with synaptic delivery of GluR4-containing AMPA receptors during in vitro classical conditioning.
    Mokin M; Lindahl JS; Keifer J
    J Neurophysiol; 2006 Jan; 95(1):215-24. PubMed ID: 16339507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-stage AMPA receptor trafficking in classical conditioning and selective role for glutamate receptor subunit 4 (tGluA4) flop splice variant.
    Zheng Z; Sabirzhanov B; Keifer J
    J Neurophysiol; 2012 Jul; 108(1):101-11. PubMed ID: 22490558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of anterogradely labeled trigeminal and auditory nerve boutons on abducens motor neurons in turtles: implications for in vitro classical conditioning.
    Keifer J; Mokin M
    J Comp Neurol; 2004 Mar; 471(2):144-52. PubMed ID: 14986308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase C-dependent and independent signaling pathways regulate synaptic GluR1 and GluR4 AMPAR subunits during in vitro classical conditioning.
    Zheng Z; Keifer J
    Neuroscience; 2008 Oct; 156(4):872-84. PubMed ID: 18809472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.