BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11264317)

  • 21. BDNF-induced synaptic delivery of AMPAR subunits is differentially dependent on NMDA receptors and requires ERK.
    Li W; Keifer J
    Neurobiol Learn Mem; 2009 Mar; 91(3):243-9. PubMed ID: 18977306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptic localization of GluR4-containing AMPARs and Arc during acquisition, extinction, and reacquisition of in vitro classical conditioning.
    Keifer J; Zheng Z; Mokin M
    Neurobiol Learn Mem; 2008 Sep; 90(2):301-8. PubMed ID: 18514553
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential localization of NMDA and AMPA receptor subunits in the lateral and basal nuclei of the amygdala: a light and electron microscopic study.
    Farb CR; Aoki C; Ledoux JE
    J Comp Neurol; 1995 Nov; 362(1):86-108. PubMed ID: 8576430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conditioned eyeblink response is impaired in mutant mice lacking NMDA receptor subunit NR2A.
    Kishimoto Y; Kawahara S; Kirino Y; Kadotani H; Nakamura Y; Ikeda M; Yoshioka T
    Neuroreport; 1997 Dec; 8(17):3717-21. PubMed ID: 9427357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MAPK signaling pathways mediate AMPA receptor trafficking in an in vitro model of classical conditioning.
    Keifer J; Zheng ZQ; Zhu D
    J Neurophysiol; 2007 Mar; 97(3):2067-74. PubMed ID: 17202235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Discharge profiles of abducens, accessory abducens, and orbicularis oculi motoneurons during reflex and conditioned blinks in alert cats.
    Trigo JA; Gruart A; Delgado-García JM
    J Neurophysiol; 1999 Apr; 81(4):1666-84. PubMed ID: 10200203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developmental changes in eye-blink conditioning and neuronal activity in the cerebellar interpositus nucleus.
    Freeman JH; Nicholson DA
    J Neurosci; 2000 Jan; 20(2):813-9. PubMed ID: 10632611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunohistochemical localization of NMDA- and AMPA-type glutamate receptor subunits in the basal ganglia of red-eared turtles.
    Fowler M; Medina L; Reiner A
    Brain Behav Evol; 1999 Nov; 54(5):276-89. PubMed ID: 10640787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Eye-blink conditioning is associated with changes in synaptic ultrastructure in the rabbit interpositus nuclei.
    Weeks AC; Connor S; Hinchcliff R; LeBoutillier JC; Thompson RF; Petit TL
    Learn Mem; 2007 Jun; 14(6):385-9. PubMed ID: 17551096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Classical conditioning selectively increases AMPA receptor binding in rabbit hippocampus.
    Tocco G; Devgan KK; Hauge SA; Weiss C; Baudry M; Thompson RF
    Brain Res; 1991 Sep; 559(2):331-6. PubMed ID: 1665385
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Learning of a hippocampal-dependent conditioning task changes the binding properties of AMPA receptors in rabbit hippocampus.
    Tocco G; Annala AJ; Baudry M; Thompson RF
    Behav Neural Biol; 1992 Nov; 58(3):222-31. PubMed ID: 1280948
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulation of N-methyl-D-aspartate receptors, AMPA receptors or metabotropic glutamate receptors leads to rapid internalization of AMPA receptors in cultured nucleus accumbens neurons.
    Mangiavacchi S; Wolf ME
    Eur J Neurosci; 2004 Aug; 20(3):649-57. PubMed ID: 15255976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Co-localization of NMDA receptors and AMPA receptors in neurons of the vestibular nuclei of rats.
    Chen LW; Yung KK; Chan YS
    Brain Res; 2000 Nov; 884(1--2):87-97. PubMed ID: 11082490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Local mechanisms of phase-dependent postsynaptic modifications of NMDA-induced oscillations in the abducens motoneurons: a simulation study.
    Kopysova IL; Korogod SM; Durand J; Tyc-Dumont S
    J Neurophysiol; 1996 Aug; 76(2):1015-24. PubMed ID: 8871216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Memory consolidation induces N-methyl-D-aspartic acid-receptor- and Ca2+/calmodulin-dependent protein kinase II-dependent modifications in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor properties.
    Bevilaqua LR; Medina JH; Izquierdo I; Cammarota M
    Neuroscience; 2005; 136(2):397-403. PubMed ID: 16182449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice.
    Gruart A; Muñoz MD; Delgado-García JM
    J Neurosci; 2006 Jan; 26(4):1077-87. PubMed ID: 16436593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat.
    Clarke NP; Bolam JP
    J Comp Neurol; 1998 Aug; 397(3):403-20. PubMed ID: 9674565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activity-dependent patterning of retinogeniculate axons proceeds with a constant contribution from AMPA and NMDA receptors.
    Hohnke CD; Oray S; Sur M
    J Neurosci; 2000 Nov; 20(21):8051-60. PubMed ID: 11050126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AMPA glutamate receptor subunits are differentially distributed in rat brain.
    Martin LJ; Blackstone CD; Levey AI; Huganir RL; Price DL
    Neuroscience; 1993 Mar; 53(2):327-58. PubMed ID: 8388083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential expression of NMDA and AMPA receptor subunits in DARPP-32-containing neurons of the cerebral cortex, hippocampus and neostriatum of rats.
    Wang WW; Cao R; Rao ZR; Chen LW
    Brain Res; 2004 Feb; 998(2):174-83. PubMed ID: 14751588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.