BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 11264408)

  • 1. Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase.
    Schmidt TR; Wu W; Goodman M; Grossman LI
    Mol Biol Evol; 2001 Apr; 18(4):563-9. PubMed ID: 11264408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-protein interfaces from cytochrome c oxidase I evolve faster than nonbinding surfaces, yet negative selection is the driving force.
    Aledo JC; Valverde H; Ruíz-Camacho M; Morilla I; López FD
    Genome Biol Evol; 2014 Oct; 6(11):3064-76. PubMed ID: 25359921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial-nuclear interactions and accelerated compensatory evolution: evidence from the primate cytochrome C oxidase complex.
    Osada N; Akashi H
    Mol Biol Evol; 2012 Jan; 29(1):337-46. PubMed ID: 21890478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive selection of mitochondrial complex I subunits during primate radiation.
    Mishmar D; Ruiz-Pesini E; Mondragon-Palomino M; Procaccio V; Gaut B; Wallace DC
    Gene; 2006 Aug; 378():11-8. PubMed ID: 16828987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes?
    Wu W; Schmidt TR; Goodman M; Grossman LI
    Mol Phylogenet Evol; 2000 Nov; 17(2):294-304. PubMed ID: 11083942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evolution of cytochrome c oxidase in high-performance fish (teleostei: Scombroidei).
    Dalziel AC; Moyes CD; Fredriksson E; Lougheed SC
    J Mol Evol; 2006 Mar; 62(3):319-31. PubMed ID: 16477525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex i.
    Gershoni M; Fuchs A; Shani N; Fridman Y; Corral-Debrinski M; Aharoni A; Frishman D; Mishmar D
    J Mol Biol; 2010 Nov; 404(1):158-71. PubMed ID: 20868692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme primary and secondary protein structure variability in the chimeric male-transmitted cytochrome c oxidase subunit II protein in freshwater mussels: evidence for an elevated amino acid substitution rate in the face of domain-specific purifying selection.
    Chapman EG; Piontkivska H; Walker JM; Stewart DT; Curole JP; Hoeh WR
    BMC Evol Biol; 2008 May; 8():165. PubMed ID: 18513440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular evolution of cytochrome c oxidase subunit IV: evidence for positive selection in simian primates.
    Wu W; Goodman M; Lomax MI; Grossman LI
    J Mol Evol; 1997 May; 44(5):477-91. PubMed ID: 9115172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of mtDNA and nDNA encoded respiratory chain proteins in chemically and genetically-derived Rho0 human fibroblasts: a comparison of subunit proteins in normal fibroblasts treated with ethidium bromide and fibroblasts from a patient with mtDNA depletion syndrome.
    Marusich MF; Robinson BH; Taanman JW; Kim SJ; Schillace R; Smith JL; Capaldi RA
    Biochim Biophys Acta; 1997 Dec; 1362(2-3):145-59. PubMed ID: 9540845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution at the cytochrome oxidase subunit 2 gene among divergent populations of the intertidal copepod, Tigriopus californicus.
    Rawson PD; Burton RS
    J Mol Evol; 2006 Jun; 62(6):753-64. PubMed ID: 16752213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-Related Differences between Cytochrome Oxidase I Proteins in a Stable Heteroplasmic Mitochondrial System.
    Skibinski DOF; Ghiselli F; Diz AP; Milani L; Mullins JGL
    Genome Biol Evol; 2017 Dec; 9(12):3265-3281. PubMed ID: 29149282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid electrostatic evolution at the binding site for cytochrome c on cytochrome c oxidase in anthropoid primates.
    Schmidt TR; Wildman DE; Uddin M; Opazo JC; Goodman M; Grossman LI
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6379-84. PubMed ID: 15851671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae).
    Sunnucks P; Hales DF
    Mol Biol Evol; 1996 Mar; 13(3):510-24. PubMed ID: 8742640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evolution of cytochrome c oxidase: rate variation among subunit VIa isoforms.
    Schmidt TR; Jaradat SA; Goodman M; Lomax MI; Grossman LI
    Mol Biol Evol; 1997 Jun; 14(6):595-601. PubMed ID: 9190060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation.
    Hellberg ME
    BMC Evol Biol; 2006 Mar; 6():24. PubMed ID: 16542456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytonuclear coadaptation in Drosophila: disruption of cytochrome c oxidase activity in backcross genotypes.
    Sackton TB; Haney RA; Rand DM
    Evolution; 2003 Oct; 57(10):2315-25. PubMed ID: 14628919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of human evolution and admixture for mitochondrial replacement therapy.
    Rishishwar L; Jordan IK
    BMC Genomics; 2017 Feb; 18(1):140. PubMed ID: 28178941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Adaptive evolution of the Homo mitochondrial genome].
    Maliarchuk BA
    Mol Biol (Mosk); 2011; 45(5):845-50. PubMed ID: 22393781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A missense mutation of cytochrome oxidase subunit II causes defective assembly and myopathy.
    Rahman S; Taanman JW; Cooper JM; Nelson I; Hargreaves I; Meunier B; Hanna MG; García JJ; Capaldi RA; Lake BD; Leonard JV; Schapira AH
    Am J Hum Genet; 1999 Oct; 65(4):1030-9. PubMed ID: 10486321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.