BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11264579)

  • 81. Exploring the active site of amine:pyruvate aminotransferase on the basis of the substrate structure-reactivity relationship: how the enzyme controls substrate specificity and stereoselectivity.
    Shin JS; Kim BG
    J Org Chem; 2002 May; 67(9):2848-53. PubMed ID: 11975536
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A study of Escherichia coli adenylosuccinate synthetase association states and the interface residues of the homodimer.
    Wang W; Gorrell A; Honzatko RB; Fromm HJ
    J Biol Chem; 1997 Mar; 272(11):7078-84. PubMed ID: 9054400
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Structural determinants of the β-selectivity of a bacterial aminotransferase.
    Wybenga GG; Crismaru CG; Janssen DB; Dijkstra BW
    J Biol Chem; 2012 Aug; 287(34):28495-502. PubMed ID: 22745123
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Intact Protein Analysis at 21 Tesla and X-Ray Crystallography Define Structural Differences in Single Amino Acid Variants of Human Mitochondrial Branched-Chain Amino Acid Aminotransferase 2 (BCAT2).
    Anderson LC; Håkansson M; Walse B; Nilsson CL
    J Am Soc Mass Spectrom; 2017 Sep; 28(9):1796-1804. PubMed ID: 28681360
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Structural analysis of QdtB, an aminotransferase required for the biosynthesis of dTDP-3-acetamido-3,6-dideoxy-alpha-D-glucose.
    Thoden JB; Schäffer C; Messner P; Holden HM
    Biochemistry; 2009 Feb; 48(7):1553-61. PubMed ID: 19178182
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase "Asian" variant.
    Larson HN; Weiner H; Hurley TD
    J Biol Chem; 2005 Aug; 280(34):30550-6. PubMed ID: 15983043
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Modeling the three-dimensional structures of bacterial aminotransferases.
    Seville M; Vincent MG; Hahn K
    Biochemistry; 1988 Nov; 27(22):8344-9. PubMed ID: 3072020
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Computational approach towards the three-dimensional structure of E. coli tyrosine aminotransferase.
    Jäger J; Solmajer T; Jansonius JN
    FEBS Lett; 1992 Jul; 306(2-3):234-8. PubMed ID: 1353027
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Thermostable D-amino acid aminotransferase and its protein engineering.
    Soda K
    Ann N Y Acad Sci; 1990; 613():358-61. PubMed ID: 2075978
    [No Abstract]   [Full Text] [Related]  

  • 90. Effects of salts on the conformation and catalytic properties of d-amino acid aminotransferase.
    Ro HS
    J Biochem Mol Biol; 2002 May; 35(3):306-12. PubMed ID: 12297014
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Structure-Function Studies of the Antibiotic Target l,l-Diaminopimelate Aminotransferase from
    Weatherhead AW; Crowther JM; Horne CR; Meng Y; Coombes D; Currie MJ; Watkin SAJ; Adams LE; Parthasarathy A; Dobson RCJ; Hudson AO
    Biochemistry; 2020 Jun; 59(24):2274-2288. PubMed ID: 32478518
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Role of branched-chain aminotransferase isoenzymes and gabapentin in neurotransmitter metabolism.
    Hutson SM; Berkich D; Drown P; Xu B; Aschner M; LaNoue KF
    J Neurochem; 1998 Aug; 71(2):863-74. PubMed ID: 9681479
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The branched-chain aminotransferase proteins: novel redox chaperones for protein disulfide isomerase--implications in Alzheimer's disease.
    El Hindy M; Hezwani M; Corry D; Hull J; El Amraoui F; Harris M; Lee C; Forshaw T; Wilson A; Mansbridge A; Hassler M; Patel VB; Kehoe PG; Love S; Conway ME
    Antioxid Redox Signal; 2014 Jun; 20(16):2497-513. PubMed ID: 24094038
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effects of amino acid derivatives on physical, mental, and physiological activities.
    Luckose F; Pandey MC; Radhakrishna K
    Crit Rev Food Sci Nutr; 2015; 55(13):1793-807. PubMed ID: 24279396
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Oxidation of leucine and alpha-ketoisocaproate to beta-hydroxy-beta-methylbutyrate in vivo.
    Van Koevering M; Nissen S
    Am J Physiol; 1992 Jan; 262(1 Pt 1):E27-31. PubMed ID: 1733247
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Structure and function of branched chain aminotransferases.
    Hutson S
    Prog Nucleic Acid Res Mol Biol; 2001; 70():175-206. PubMed ID: 11642362
    [TBL] [Abstract][Full Text] [Related]  

  • 97. 4-Hydroxyphenylpyruvate dioxygenase.
    Moran GR
    Arch Biochem Biophys; 2005 Jan; 433(1):117-28. PubMed ID: 15581571
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The mechanism of alpha-ketoisocaproate oxygenase. Formation of beta-hydroxyisovalerate from alpha-ketoisocaproate.
    Sabourin PJ; Bieber LL
    J Biol Chem; 1982 Jul; 257(13):7468-71. PubMed ID: 7085633
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Formation of beta-hydroxyisovalerate by an alpha-ketoisocaproate oxygenase in human liver.
    Sabourin PJ; Bieber LL
    Metabolism; 1983 Feb; 32(2):160-4. PubMed ID: 6827986
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The role of leucine and its metabolites in protein and energy metabolism.
    Duan Y; Li F; Li Y; Tang Y; Kong X; Feng Z; Anthony TG; Watford M; Hou Y; Wu G; Yin Y
    Amino Acids; 2016 Jan; 48(1):41-51. PubMed ID: 26255285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.