These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11264800)

  • 1. Further Roles of Geometry and Properties in the Mechanics of Saccular Aneurysms.
    Shah AD; Harris JL; Kyriacou SK; Humphrey JD
    Comput Methods Biomech Biomed Engin; 1998; 1(2):109-121. PubMed ID: 11264800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms.
    Kyriacou SK; Humphrey JD
    J Biomech; 1996 Aug; 29(8):1015-22. PubMed ID: 8817368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element based predictions of preferred material symmetries in saccular aneurysms.
    Ryan JM; Humphrey JD
    Ann Biomed Eng; 1999; 27(5):641-7. PubMed ID: 10548333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of Laplace's equation in aneurysm mechanics.
    Humphrey JD; Kyriacou SK
    Neurol Res; 1996 Jun; 18(3):204-8. PubMed ID: 8837052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model for the mechanics of saccular aneurysms.
    Canham PB; Ferguson GG
    Neurosurgery; 1985 Aug; 17(2):291-5. PubMed ID: 4033880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite strain elastodynamics of intracranial saccular aneurysms.
    Shah AD; Humphrey JD
    J Biomech; 1999 Jun; 32(6):593-9. PubMed ID: 10332623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear mathematical model for the development and rupture of intracranial saccular aneurysms.
    Hademenos GJ; Massoud T; Valentino DJ; Duckwiler G; Viñuela F
    Neurol Res; 1994 Oct; 16(5):376-84. PubMed ID: 7870277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use and Misuse of Laplace's Law in Ophthalmology.
    Chung CW; Girard MJ; Jan NJ; Sigal IA
    Invest Ophthalmol Vis Sci; 2016 Jan; 57(1):236-45. PubMed ID: 26803799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the potentially protective role of contact constraints on saccular aneurysms.
    Seshaiyer P; Humphrey JD
    J Biomech; 2001 May; 34(5):607-12. PubMed ID: 11311701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of wall thickness and saccular geometry on the computational wall stress of descending thoracic aortic aneurysms.
    Shang EK; Nathan DP; Sprinkle SR; Fairman RM; Bavaria JE; Gorman RC; Gorman JH; Jackson BM
    Circulation; 2013 Sep; 128(11 Suppl 1):S157-62. PubMed ID: 24030401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial variations in wall thickness, material stiffness and initial shape affect wall stress and shape of intracranial aneurysms.
    Challa V; Han HC
    Neurol Res; 2007 Sep; 29(6):569-77. PubMed ID: 17535557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Further evidence for the dynamic stability of intracranial saccular aneurysms.
    David G; Humphrey JD
    J Biomech; 2003 Aug; 36(8):1143-50. PubMed ID: 12831740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical model of the rupture mechanism of intracranial saccular aneurysms through daughter aneurysm formation and growth.
    Meng H; Feng Y; Woodward SH; Bendok BR; Hanel RA; Guterman LR; Hopkins LN
    Neurol Res; 2005 Jul; 27(5):459-65. PubMed ID: 15978170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms: computational flow dynamics analysis of the risk factors for lesion rupture.
    Hassan T; Timofeev EV; Saito T; Shimizu H; Ezura M; Matsumoto Y; Takayama K; Tominaga T; Takahashi A
    J Neurosurg; 2005 Oct; 103(4):662-80. PubMed ID: 16266049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased wall stress of saccular versus fusiform aneurysms of the descending thoracic aorta.
    Nathan DP; Xu C; Pouch AM; Chandran KB; Desjardins B; Gorman JH; Fairman RM; Gorman RC; Jackson BM
    Ann Vasc Surg; 2011 Nov; 25(8):1129-37. PubMed ID: 22023944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer modeling of intracranial saccular and lateral aneurysms for the study of their hemodynamics.
    Burleson AC; Strother CM; Turitto VT
    Neurosurgery; 1995 Oct; 37(4):774-82; discussion 782-4. PubMed ID: 8559308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical wall properties of human intracranial aneurysms resected following surgical clipping (IRRAs Project).
    Costalat V; Sanchez M; Ambard D; Thines L; Lonjon N; Nicoud F; Brunel H; Lejeune JP; Dufour H; Bouillot P; Lhaldky JP; Kouri K; Segnarbieux F; Maurage CA; Lobotesis K; Villa-Uriol MC; Zhang C; Frangi AF; Mercier G; Bonafé A; Sarry L; Jourdan F
    J Biomech; 2011 Oct; 44(15):2685-91. PubMed ID: 21924427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Contact Constraints on the Dynamics of Idealized Intracranial Saccular Aneurysms.
    Alam M; Seshaiyer P
    Bioengineering (Basel); 2019 Aug; 6(3):. PubMed ID: 31480337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new inverse method for estimation of in vivo mechanical properties of the aortic wall.
    Liu M; Liang L; Sun W
    J Mech Behav Biomed Mater; 2017 Aug; 72():148-158. PubMed ID: 28494272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expressions of PDGF-B and collagen type III in the remodeling of experimental saccular aneurysm in rats.
    Liu B; Zhang JN; Pu PY
    Neurol Res; 2008 Jul; 30(6):632-8. PubMed ID: 18489818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.