These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 11264823)

  • 1. Development and Physical Validation of a Finite Element Model of Total Hip Dislocation.
    Scifert CF; Brown TD; Pedersen DR; Heiner AD; Callaghan JJ
    Comput Methods Biomech Biomed Engin; 1999; 2(2):139-147. PubMed ID: 11264823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of femoral head size on impingement, dislocation and stress distribution in total hip replacement.
    Kluess D; Martin H; Mittelmeier W; Schmitz KP; Bader R
    Med Eng Phys; 2007 May; 29(4):465-71. PubMed ID: 16901743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element analysis of a novel design approach to resisting total hip dislocation.
    Scifert CF; Brown TD; Lipman JD
    Clin Biomech (Bristol, Avon); 1999 Dec; 14(10):697-703. PubMed ID: 10545623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design factors influencing performance of constrained acetabular liners: finite element characterization.
    Bouchard SM; Stewart KJ; Pedersen DR; Callaghan JJ; Brown TD
    J Biomech; 2006; 39(5):885-93. PubMed ID: 16488227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element analysis of factors influencing total hip dislocation.
    Scifert CF; Brown TD; Pedersen DR; Callaghan JJ
    Clin Orthop Relat Res; 1998 Oct; (355):152-62. PubMed ID: 9917600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using nonlinear finite element models to analyse stress distribution during subluxation and torque required for dislocation of newly developed total hip structure after prosthetic impingement.
    Chi WM; Lin CC; Ho YJ; Lin HC; Chen JH
    Med Biol Eng Comput; 2018 Jan; 56(1):37-47. PubMed ID: 28667590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of shear stresses at the implant-bone interface of an acetabular press-fit cup during impingement.
    Voigt C; Klöhn C; Bader R; von Salis-Soglio G; Scholz R
    Biomed Tech (Berl); 2007 Apr; 52(2):208-15. PubMed ID: 17408381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Experimental analysis of neutral, asymmetric and constraint liners for total hip replacement: investigation of range of motion and protection against joint instability].
    Bader R; Steinhauser E; Scholz R; Simnacher M; Mittelmeier W
    Z Orthop Ihre Grenzgeb; 2004; 142(5):577-85. PubMed ID: 15472768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Method for the evaluation of factors influencing the dislocation stability of total hip endoprotheses].
    Bader R; Scholz R; Steinhauser E; Busch R; Mittelmeier W
    Biomed Tech (Berl); 2004 May; 49(5):137-44. PubMed ID: 15212199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress analysis of the anterior tibial post in posterior stabilized knee prostheses.
    Huang CH; Liau JJ; Huang CH; Cheng CK
    J Orthop Res; 2007 Apr; 25(4):442-9. PubMed ID: 17205566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element simulation of early creep and wear in total hip arthroplasty.
    Bevill SL; Bevill GR; Penmetsa JR; Petrella AJ; Rullkoetter PJ
    J Biomech; 2005 Dec; 38(12):2365-74. PubMed ID: 16214484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis.
    Chegini S; Beck M; Ferguson SJ
    J Orthop Res; 2009 Feb; 27(2):195-201. PubMed ID: 18752280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modeling of resurfacing hip prosthesis: estimation of accuracy through experimental validation.
    Taddei F; Martelli S; Gill HS; Cristofolini L; Viceconti M
    J Biomech Eng; 2010 Feb; 132(2):021002. PubMed ID: 20370239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of micromotion in modular acetabular components during gait and subluxation: a finite element investigation.
    Amirouche F; Romero F; Gonzalez M; Aram L
    J Biomech Eng; 2008 Apr; 130(2):021002. PubMed ID: 18412489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limited range of motion of hip resurfacing arthroplasty due to unfavorable ratio of prosthetic head size and femoral neck diameter.
    Kluess D; Zietz C; Lindner T; Mittelmeier W; Schmitz KP; Bader R
    Acta Orthop; 2008 Dec; 79(6):748-54. PubMed ID: 19085490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional parameterized and visually kinematic simulation module for the theoretical range of motion of total hip arthroplasty.
    Ji WT; Tao K; Wang CT
    Clin Biomech (Bristol, Avon); 2010 Jun; 25(5):427-32. PubMed ID: 20189695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental validation of a finite element model of the temporomandibular joint.
    Devocht JW; Goel VK; Zeitler DL; Lew D
    J Oral Maxillofac Surg; 2001 Jul; 59(7):775-8. PubMed ID: 11429739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait cycle finite element comparison of rotating-platform total knee designs.
    Otto JK; Callaghan JJ; Brown TD
    Clin Orthop Relat Res; 2003 May; (410):181-8. PubMed ID: 12771829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bony impingement affects range of motion after total hip arthroplasty: A subject-specific approach.
    Kessler O; Patil S; Wirth S; Mayr E; Colwell CW; D'Lima DD
    J Orthop Res; 2008 Apr; 26(4):443-52. PubMed ID: 18050356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.