These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 11264826)

  • 41. Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis.
    Perktold K; Resch M
    J Biomed Eng; 1990 Mar; 12(2):111-23. PubMed ID: 2319760
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis.
    Piskin S; Serdar Celebi M
    Comput Biol Med; 2013 Jul; 43(6):717-28. PubMed ID: 23668347
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements.
    Botnar R; Rappitsch G; Scheidegger MB; Liepsch D; Perktold K; Boesiger P
    J Biomech; 2000 Feb; 33(2):137-44. PubMed ID: 10653026
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of cyclic motion on coronary blood flow.
    Hasan M; Rubenstein DA; Yin W
    J Biomech Eng; 2013 Dec; 135(12):121002. PubMed ID: 24008675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A numerical and experimental analysis of the flow field in a two-dimensional model of the human carotid artery bifurcation.
    Rindt CC; vd Vosse FN; Steenhoven AA; Janssen JD; Reneman RS
    J Biomech; 1987; 20(5):499-509. PubMed ID: 3611124
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Numerical analysis of non-Newtonian blood flow and wall shear stress in realistic single, double and triple aorto-coronary bypasses.
    Vimmr J; Jonášová A; Bublík O
    Int J Numer Method Biomed Eng; 2013 Oct; 29(10):1057-81. PubMed ID: 23733715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Coron Artery Dis; 2006 May; 17(4):351-8. PubMed ID: 16707958
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations.
    Soulis J; Fytanidis D; Seralidou K; Giannoglou G
    Hippokratia; 2014 Jan; 18(1):12-6. PubMed ID: 25125945
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of the axial flow field in stenosed carotid artery bifurcation models--LDA experiments.
    Gijsen FJ; Palmen DE; van der Beek MH; van de Vosse FN; van Dongen ME; Janssen JD
    J Biomech; 1996 Nov; 29(11):1483-9. PubMed ID: 8894929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-dimensional steady flow through a bifurcation.
    Yung CN; De Witt KJ; Keith TG
    J Biomech Eng; 1990 May; 112(2):189-97. PubMed ID: 2345450
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics.
    Löw M; Perktold K; Raunig R
    Biorheology; 1993; 30(3-4):287-98. PubMed ID: 8286729
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of compliance on wall shear in casts of a human aortic bifurcation.
    Duncan DD; Bargeron CB; Borchardt SE; Deters OJ; Gearhart SA; Mark FF; Friedman MH
    J Biomech Eng; 1990 May; 112(2):183-8. PubMed ID: 2345449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Wall shear stress distribution in the human carotid siphon during pulsatile flow.
    Perktold K; Florian H; Hilbert D; Peter R
    J Biomech; 1988; 21(8):663-71. PubMed ID: 3170620
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Numerical study of oxygen transport in a carotid bifurcation.
    Tada S
    Phys Med Biol; 2010 Jul; 55(14):3993-4010. PubMed ID: 20577040
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unsteady flow in a rigid 3-D model of the carotid artery bifurcation.
    Rindt CC; Steenhoven AA
    J Biomech Eng; 1996 Feb; 118(1):90-6. PubMed ID: 8833079
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of elastic property of the wall on flow characteristics through arterial stenoses.
    Moayeri MS; Zendehbudi GR
    J Biomech; 2003 Apr; 36(4):525-35. PubMed ID: 12600343
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Oxygen mass transport in a compliant carotid bifurcation model.
    Tada S; Tarbell JM
    Ann Biomed Eng; 2006 Sep; 34(9):1389-99. PubMed ID: 16874558
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Shear stress at a compliant model of the human carotid bifurcation.
    Anayiotos AS; Jones SA; Giddens DP; Glagov S; Zarins CK
    J Biomech Eng; 1994 Feb; 116(1):98-106. PubMed ID: 8189720
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of vasoactive drugs on wall shear stress distribution in the abdominal aortic bifurcation: an in vitro study.
    Lee CS; Tarbell JM
    Ann Biomed Eng; 1998; 26(2):200-12. PubMed ID: 9525761
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation.
    Delfino A; Stergiopulos N; Moore JE; Meister JJ
    J Biomech; 1997 Aug; 30(8):777-86. PubMed ID: 9239562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.