These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 11265009)

  • 1. Influence of the number of cortices on the stiffness of plate fixation of diaphyseal fractures.
    ElMaraghy AW; ElMaraghy MW; Nousiainen M; Richards RR; Schemitsch EH
    J Orthop Trauma; 2001; 15(3):186-91. PubMed ID: 11265009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomechanical evaluation of different plates for fixation of canine radial osteotomies.
    Jain R; Podworny N; Hearn T; Richards RR; Schemitsch EH
    J Trauma; 1998 Jan; 44(1):193-7. PubMed ID: 9464772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical testing of the LCP--how can stability in locked internal fixators be controlled?
    Stoffel K; Dieter U; Stachowiak G; Gächter A; Kuster MS
    Injury; 2003 Nov; 34 Suppl 2():B11-9. PubMed ID: 14580982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro comparison of stiffness of plate fixation of radii from large- and small-breed dogs.
    Gauthier CM; Conrad BP; Lewis DD; Pozzi A
    Am J Vet Res; 2011 Aug; 72(8):1112-7. PubMed ID: 21801070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of plate location and selection on the stability of midshaft clavicle osteotomies: a biomechanical study.
    Iannotti MR; Crosby LA; Stafford P; Grayson G; Goulet R
    J Shoulder Elbow Surg; 2002; 11(5):457-62. PubMed ID: 12378164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of three different fixation constructs for radial neck fractures: a biomechanical study.
    Chen H; Wu D; Pan T; Pan J; Zhang R; Shi X
    J Orthop Surg Res; 2017 Nov; 12(1):175. PubMed ID: 29137658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical evaluation of a new minimum-contact plate for internal fracture fixation.
    Abel EW; Sun J
    J Orthop Trauma; 1998 Aug; 12(6):382-6. PubMed ID: 9715444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical evaluation of locking plate radial shaft fixation: unicortical locking fixation versus mixed bicortical and unicortical fixation in a sawbone model.
    Roberts JW; Grindel SI; Rebholz B; Wang M
    J Hand Surg Am; 2007 Sep; 32(7):971-5. PubMed ID: 17826548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical evaluation of fracture fixation constructs using a variable-angle locked periprosthetic femur plate system.
    Hoffmann MF; Burgers TA; Mason JJ; Williams BO; Sietsema DL; Jones CB
    Injury; 2014 Jul; 45(7):1035-41. PubMed ID: 24680467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro biomechanical comparison of interlocking nail constructs and double plating for fixation of diaphyseal femur fractures in immature horses.
    Radcliffe RM; Lopez MJ; Turner TA; Watkins JP; Radcliffe CH; Markel MD
    Vet Surg; 2001; 30(2):179-90. PubMed ID: 11230773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can locking screws allow smaller, low-profile plates to achieve comparable stability to larger, standard plates?
    Garrigues GE; Glisson RR; Garrigues NW; Richard MJ; Ruch DS
    J Orthop Trauma; 2011 Jun; 25(6):347-54. PubMed ID: 21577070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro biomechanical comparison of an interlocking nail system and dynamic compression plate fixation of ostectomized equine third metacarpal bones.
    Lopez MJ; Wilson DG; Vanderby R; Markel MD
    Vet Surg; 1999; 28(5):333-40. PubMed ID: 10493637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of crossed screw versus plate fixation for radial neck fractures.
    Gutowski CJ; Darvish K; Ilyas AM; Jones CM
    Clin Biomech (Bristol, Avon); 2015 Nov; 30(9):966-70. PubMed ID: 26184087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical comparison of mono- and bicortical screws in an experimentally induced gap fracture.
    Demner D; Garcia TC; Serdy MG; Hayashi K; Nir BA; Stover SM
    Vet Comp Orthop Traumatol; 2014; 27(6):422-9. PubMed ID: 25327936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical stability of different fixation constructs for ORIF of radial neck fractures.
    Capo JT; Svach D; Ahsgar J; Orillaza NS; Sabatino CT
    Orthopedics; 2008 Oct; 31(10):. PubMed ID: 19226014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Schuhli augmentation of plate and screw fixation for humeral shaft fractures: a laboratory study.
    Simon JA; Dennis MG; Kummer FJ; Koval KJ
    J Orthop Trauma; 1999; 13(3):196-9. PubMed ID: 10206251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical comparison of bicortical locking versus unicortical far-cortex-abutting locking screw-plate fixation for comminuted radial shaft fractures.
    Overturf SJ; Morris RP; Gugala Z; Lindsey RW
    J Hand Surg Am; 2014 Oct; 39(10):1907-13. PubMed ID: 25149898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical evaluation of periprosthetic femoral fracture fixation.
    Zdero R; Walker R; Waddell JP; Schemitsch EH
    J Bone Joint Surg Am; 2008 May; 90(5):1068-77. PubMed ID: 18451400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical comparison of two alternative tibial plateau leveling osteotomy plates with the original standard in an axially loaded gap model: an in vitro study.
    Kloc PA; Kowaleski MP; Litsky AS; Brown NO; Johnson KA
    Vet Surg; 2009 Jan; 38(1):40-8. PubMed ID: 19152616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in vitro biomechanical study of bone plate and interlocking nail in a canine diaphyseal femoral fracture model.
    Bernarde A; Diop A; Maurel N; Viguier E
    Vet Surg; 2001; 30(5):397-408. PubMed ID: 11555814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.