BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1126529)

  • 1. Stimulation of electron transport and activation of reduced nicotinamide--adenine dinucleotide dehydrogenase in Jerusalem-artichoke mitochondria.
    Palmer JM; Sotthibandhu R
    Biochem Soc Trans; 1975; 3(1):171-3. PubMed ID: 1126529
    [No Abstract]   [Full Text] [Related]  

  • 2. The activation of non-phosphorylating electron transport by adenine nucleotides in Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R; Palmer JM
    Biochem J; 1975 Dec; 152(3):637-45. PubMed ID: 1227506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulation of respiration rate in growing bacteria.
    Harrison DE
    Adv Microb Physiol; 1976; 14(11):243-313. PubMed ID: 12649
    [No Abstract]   [Full Text] [Related]  

  • 4. The "uniqueness" of plant mitochondria.
    Palmer JM
    Biochem Soc Trans; 1979 Feb; 7(1):246-52. PubMed ID: 374153
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of state 4 electron transport in the activation of state 3 respiration in potato mitochondria.
    Raison JK; Laties GG; Crompton M
    J Bioenerg; 1973; 4(4):409-22. PubMed ID: 4723529
    [No Abstract]   [Full Text] [Related]  

  • 6. Redox potentiometry in mitochondrial and photosynthetic bioenergetics.
    Dutton PL; Wilson DF
    Biochim Biophys Acta; 1974 Oct; 346(2):165-212. PubMed ID: 4154105
    [No Abstract]   [Full Text] [Related]  

  • 7. The quest for coupling site 1.
    Singer TP; Gutman M
    Horiz Biochem Biophys; 1974; 1():261-302. PubMed ID: 4157070
    [No Abstract]   [Full Text] [Related]  

  • 8. Isolation of an ATP-Pi exchangease from lysolecithin-treated electron transport particles.
    Sadler MH; Hunter DR; Haworth RA
    Biochem Biophys Res Commun; 1974 Jul; 59(2):804-12. PubMed ID: 4152934
    [No Abstract]   [Full Text] [Related]  

  • 9. Adenine nucleotide translocation in Jerusalem-artichoke mitochondria.
    Passam HC; Souverijn JH; Kemp A
    Biochim Biophys Acta; 1973 Apr; 305(1):88-94. PubMed ID: 4268944
    [No Abstract]   [Full Text] [Related]  

  • 10. Oxidative metabolism at low PO 2 .
    Jöbsis FF
    Fed Proc; 1972; 31(5):1404-13. PubMed ID: 4341386
    [No Abstract]   [Full Text] [Related]  

  • 11. Iron-sulfur proteins, the most numerous and most diversified components of the mitochondrial electron transfer system.
    Beinert H
    Adv Exp Med Biol; 1976; 74():137-49. PubMed ID: 183465
    [No Abstract]   [Full Text] [Related]  

  • 12. The respiratory chain of plant mitochondria. XV. Equilibration of cytochromes C549, b553, b557 and ubiquinone in Mung bean mitochondria: placement of cytochrome b 557 and estimation of the midpoint potential of ubiquinone.
    Storey BI
    Biochim Biophys Acta; 1973 Apr; 292(3):592-603. PubMed ID: 4705446
    [No Abstract]   [Full Text] [Related]  

  • 13. Activation of NADH oxidation by atractylate in Jerusalem artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R; Palmer JM
    FEBS Lett; 1978 May; 89(1):165-8. PubMed ID: 207566
    [No Abstract]   [Full Text] [Related]  

  • 14. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P; Lance C
    Biochem J; 1991 Feb; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stimulation of exogenous NADH oxidation in Jerusalem artichoke mitochondria by screening of charges on the membranes.
    Johnston SP; Møller IM; Palmer JM
    FEBS Lett; 1979 Dec; 108(1):28-32. PubMed ID: 230083
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.
    Palmer JM; Schwitzguébel JP; Møller IM
    Biochem J; 1982 Dec; 208(3):703-11. PubMed ID: 6819864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the energy state of isolated brown adipose tissue mitochondria. Effect of adenine nucleotides and oligomycin on the generation and dissipation of the "energy potential".
    Flatmark T; Pedersen JI
    Biochim Biophys Acta; 1973 Jan; 292(1):64-72. PubMed ID: 4705136
    [No Abstract]   [Full Text] [Related]  

  • 19. Energy transfer by redox proteins in mitochondria.
    Papa S; Lorusso M; Guerrieri F
    Prog Clin Biol Res; 1982; 102 Pt B():423-37. PubMed ID: 6298803
    [No Abstract]   [Full Text] [Related]  

  • 20. [Structure and function of chromatophore membrane (author's transl)].
    Horio T; Kakuno T; Erabi T
    Tanpakushitsu Kakusan Koso; 1975 Mar; 20(4):352-65. PubMed ID: 240187
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.