These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 11265680)

  • 1. Dynamics of the eye's wave aberration.
    Hofer H; Artal P; Singer B; Aragón JL; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2001 Mar; 18(3):497-506. PubMed ID: 11265680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in retinal image quality with dynamic correction of the eye's aberrations.
    Hofer H; Chen L; Yoon GY; Singer B; Yamauchi Y; Williams DR
    Opt Express; 2001 May; 8(11):631-43. PubMed ID: 19421252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monochromatic aberrations of the human eye in a large population.
    Porter J; Guirao A; Cox IG; Williams DR
    J Opt Soc Am A Opt Image Sci Vis; 2001 Aug; 18(8):1793-803. PubMed ID: 11488483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal dynamics of ocular aberrations: monocular vs binocular vision.
    Mira-Agudelo A; Lundström L; Artal P
    Ophthalmic Physiol Opt; 2009 May; 29(3):256-63. PubMed ID: 19422556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical variation of aberration structure and image quality in a normal population of healthy eyes.
    Thibos LN; Hong X; Bradley A; Cheng X
    J Opt Soc Am A Opt Image Sci Vis; 2002 Dec; 19(12):2329-48. PubMed ID: 12469728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of cardiopulmonary signals in the dynamics of the eye's wavefront aberrations.
    Muma M; Iskander DR; Collins MJ
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):373-83. PubMed ID: 19789099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluctuations of wavefront aberrations of the eye.
    Zhu M; Collins MJ; Robert Iskander D
    Ophthalmic Physiol Opt; 2004 Nov; 24(6):562-71. PubMed ID: 15491484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of accommodation and the ocular surface to the microfluctuations of wavefront aberrations of the eye.
    Zhu M; Collins MJ; Iskander DR
    Ophthalmic Physiol Opt; 2006 Sep; 26(5):439-46. PubMed ID: 16918767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor.
    Salmon TO; Thibos LN; Bradley A
    J Opt Soc Am A Opt Image Sci Vis; 1998 Sep; 15(9):2457-65. PubMed ID: 9729857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of ocular aberrations with gaze.
    Prado P; Arines J; Bará S; Manzanera S; Mira-Agudelo A; Artal P
    Ophthalmic Physiol Opt; 2009 May; 29(3):264-71. PubMed ID: 19422557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive optics system for investigation of the effect of the aberration dynamics of the human eye on steady-state accommodation control.
    Hampson KM; Paterson C; Dainty C; Mallen EA
    J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1082-8. PubMed ID: 16642185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaos in ocular aberration dynamics of the human eye.
    Hampson KM; Mallen EA
    Biomed Opt Express; 2012 May; 3(5):863-77. PubMed ID: 22567581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closed-loop adaptive optics in the human eye.
    Fernández EJ; Iglesias I; Artal P
    Opt Lett; 2001 May; 26(10):746-8. PubMed ID: 18040440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the polarization on ocular wave aberration measurements.
    Prieto PM; Vargas-Martín F; McLellan JS; Burns SA
    J Opt Soc Am A Opt Image Sci Vis; 2002 Apr; 19(4):809-14. PubMed ID: 11934175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of correction of ocular aberration dynamics on the accommodation response to a sinusoidally moving stimulus.
    Chin SS; Hampson KM; Mallen EA
    Opt Lett; 2009 Nov; 34(21):3274-6. PubMed ID: 19881565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential role for microfluctuations as a temporal directional cue to accommodation.
    Metlapally S; Tong JL; Tahir HJ; Schor CM
    J Vis; 2016; 16(6):19. PubMed ID: 27120075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A population study on changes in wave aberrations with accommodation.
    Cheng H; Barnett JK; Vilupuru AS; Marsack JD; Kasthurirangan S; Applegate RA; Roorda A
    J Vis; 2004 Apr; 4(4):272-80. PubMed ID: 15134474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pupil tracking with a Hartmann-Shack wavefront sensor.
    Arines J; Prado P; Bará S
    J Biomed Opt; 2010; 15(3):036022. PubMed ID: 20615024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accommodative lag and fluctuations when optical aberrations are manipulated.
    Gambra E; Sawides L; Dorronsoro C; Marcos S
    J Vis; 2009 Jun; 9(6):4.1-15. PubMed ID: 19761295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of the fixational eye movements to the variability of the measured ocular aberration.
    Arines J; Pailos E; Prado P; Bará S
    Ophthalmic Physiol Opt; 2009 May; 29(3):281-7. PubMed ID: 19422559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.