These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 11265789)
1. Studies on the suitability of alginate-entrapped Chlamydomonas reinhardtii cells for sustaining nitrate consumption processes. Vílchez C; Garbayo I; Markvicheva E; Galván F; León R Bioresour Technol; 2001 May; 78(1):55-61. PubMed ID: 11265789 [TBL] [Abstract][Full Text] [Related]
2. Nitrate removal from drinking water through the use of encapsulated microorganisms in alginate beads. Liu SX; Hermanowicz SW; Peng M Environ Technol; 2003 Sep; 24(9):1129-34. PubMed ID: 14599146 [TBL] [Abstract][Full Text] [Related]
3. Inhibition of nitrate consumption by nitrite in entrapped Chlamydomonas reinhardtii cells. Garbayo I; León R; Vigara J; Vílchez C Bioresour Technol; 2002 Feb; 81(3):207-15. PubMed ID: 11800487 [TBL] [Abstract][Full Text] [Related]
4. Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Kosourov SN; Seibert M Biotechnol Bioeng; 2009 Jan; 102(1):50-8. PubMed ID: 18823051 [TBL] [Abstract][Full Text] [Related]
6. Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate. Krajangpan S; Bermudez JJ; Bezbaruah AN; Chisholm BJ; Khan E Water Sci Technol; 2008; 58(11):2215-22. PubMed ID: 19092199 [TBL] [Abstract][Full Text] [Related]
7. Decoloration of textile dyes by alginate-immobilized Trametes versicolor. Ramsay JA; Mok WH; Luu YS; Savage M Chemosphere; 2005 Nov; 61(7):956-64. PubMed ID: 15878190 [TBL] [Abstract][Full Text] [Related]
8. Effects of gelling bath on the physical properties of alginate gel beads and the biological characteristics of entrapped HepG2 cells. Sun D; Liu Y; Wu H; Ren Y; Ma X; Wu H; Sun G Biotechnol Appl Biochem; 2018 Mar; 65(2):263-273. PubMed ID: 28791765 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of propionitrile by Klebsiella oxytoca immobilized in alginate and cellulose triacetate gel. Chen CY; Chen SC; Fingas M; Kao CM J Hazard Mater; 2010 May; 177(1-3):856-63. PubMed ID: 20129732 [TBL] [Abstract][Full Text] [Related]
10. Enhanced degradation of phenol by Pseudomonas sp. CP4 entrapped in agar and calcium alginate beads in batch and continuous processes. Aneez Ahamad PY; Mohammad Kunhi AA Biodegradation; 2011 Apr; 22(2):253-65. PubMed ID: 20658308 [TBL] [Abstract][Full Text] [Related]
11. Effect of air-blast drying and the presence of protectants on the viability of yeast entrapped in calcium alginate beads with an aim to improve the survival rate. Kim DH; Lee SB; Park HD Appl Microbiol Biotechnol; 2017 Jan; 101(1):93-102. PubMed ID: 27510980 [TBL] [Abstract][Full Text] [Related]
12. Metal toxicity in Chlamydomonas reinhardtii. Effect on sulfate and nitrate assimilation. Mosulén S; Domínguez MJ; Vigara J; Vílchez C; Guiraum A; Vega JM Biomol Eng; 2003 Jul; 20(4-6):199-203. PubMed ID: 12919798 [TBL] [Abstract][Full Text] [Related]
13. Decolorization of the anthraquinone dye Cibacron Blue 3G-A with immobilized Coprinus cinereus in fluidized bed bioreactor. Moutaouakkil A; Blaghen M Prikl Biokhim Mikrobiol; 2011; 47(1):66-72. PubMed ID: 21438473 [TBL] [Abstract][Full Text] [Related]
14. Kinetics studies of p-cresol biodegradation by using Pseudomonas putida in batch reactor and in continuous bioreactor packed with calcium alginate beads. Mathur AK; Bala S; Majumder CB; Sarkar S Water Sci Technol; 2010; 62(12):2920-9. PubMed ID: 21123923 [TBL] [Abstract][Full Text] [Related]
15. Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. Bezbaruah AN; Krajangpan S; Chisholm BJ; Khan E; Bermudez JJ J Hazard Mater; 2009 Jul; 166(2-3):1339-43. PubMed ID: 19178997 [TBL] [Abstract][Full Text] [Related]
16. [Biodegradation of methyl tert-butyl ether by stabilized immobilized Methylibium petroleiphilum PM1 cells and its biodegradation kinetics analysis]. Cheng ZW; Fu LX; Jiang YF; Chen JM; Zhang R Huan Jing Ke Xue; 2011 May; 32(5):1511-7. PubMed ID: 21780613 [TBL] [Abstract][Full Text] [Related]
17. Nitrate removal from agricultural infiltrate by bioaugmented free and alginate entrapped cells. Siripattanakul S; Pochant CJ; Khan E Water Environ Res; 2010 Jul; 82(7):617-21. PubMed ID: 20669723 [TBL] [Abstract][Full Text] [Related]
18. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate. Yujian W; Xiaojuan Y; Wei T; Hongyu L J Microbiol Methods; 2007 Feb; 68(2):212-7. PubMed ID: 16979768 [TBL] [Abstract][Full Text] [Related]
19. Effects of alginate oligosaccharide mixtures on the growth and fatty acid composition of the green alga Chlamydomonas reinhardtii. Yamasaki Y; Yokose T; Nishikawa T; Kim D; Jiang Z; Yamaguchi K; Oda T J Biosci Bioeng; 2012 Jan; 113(1):112-6. PubMed ID: 22018736 [TBL] [Abstract][Full Text] [Related]
20. Optimizing alginate beads for the immobilisation of Phaeodactylum tricornutum in estuarine waters. Cabrita MT; Raimundo J; Pereira P; Vale C Mar Environ Res; 2013; 87-88():37-43. PubMed ID: 23587416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]