These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 11266454)

  • 1. The positioning and dynamics of origins of replication in the budding yeast nucleus.
    Heun P; Laroche T; Raghuraman MK; Gasser SM
    J Cell Biol; 2001 Jan; 152(2):385-400. PubMed ID: 11266454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosome dynamics in the yeast interphase nucleus.
    Heun P; Laroche T; Shimada K; Furrer P; Gasser SM
    Science; 2001 Dec; 294(5549):2181-6. PubMed ID: 11739961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamics of yeast telomeres and silencing proteins through the cell cycle.
    Laroche T; Martin SG; Tsai-Pflugfelder M; Gasser SM
    J Struct Biol; 2000 Apr; 129(2-3):159-74. PubMed ID: 10806066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination of origin-firing timing.
    Tanaka S; Nakato R; Katou Y; Shirahige K; Araki H
    Curr Biol; 2011 Dec; 21(24):2055-63. PubMed ID: 22169533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus.
    Labib K; Diffley JF; Kearsey SE
    Nat Cell Biol; 1999 Nov; 1(7):415-22. PubMed ID: 10559985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast.
    Yan H; Merchant AM; Tye BK
    Genes Dev; 1993 Nov; 7(11):2149-60. PubMed ID: 8224843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scheduled conversion of replication complex architecture at replication origins of Saccharomyces cerevisiae during the cell cycle.
    Tadokoro R; Fujita M; Miura H; Shirahige K; Yoshikawa H; Tsurimoto T; Obuse C
    J Biol Chem; 2002 May; 277(18):15881-9. PubMed ID: 11842092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome occupancy as a novel chromatin parameter for replication origin functions.
    Rodriguez J; Lee L; Lynch B; Tsukiyama T
    Genome Res; 2017 Feb; 27(2):269-277. PubMed ID: 27895110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae.
    Supady A; Klipp E; Barberis M
    J Biotechnol; 2013 Oct; 168(2):174-84. PubMed ID: 23850861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nuclear location and chromatin organization of active chorion amplification origins.
    Calvi BR; Spradling AC
    Chromosoma; 2001 Jul; 110(3):159-72. PubMed ID: 11513291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of human Mcm10 is spatially and temporally regulated during the S phase.
    Izumi M; Yatagai F; Hanaoka F
    J Biol Chem; 2004 Jul; 279(31):32569-77. PubMed ID: 15136575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication.
    Santocanale C; Diffley JF
    Nature; 1998 Oct; 395(6702):615-8. PubMed ID: 9783589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell cycle-dependent establishment of a late replication program.
    Raghuraman MK; Brewer BJ; Fangman WL
    Science; 1997 May; 276(5313):806-9. PubMed ID: 9115207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time.
    Hiraga S; Robertson ED; Donaldson AD
    EMBO J; 2006 Apr; 25(7):1505-14. PubMed ID: 16525505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin structure restricts origin utilization when quiescent cells re-enter the cell cycle.
    Lee PH; Osley MA
    Nucleic Acids Res; 2021 Jan; 49(2):864-878. PubMed ID: 33367871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of association of origins of DNA replication with the nuclear matrix during the cell cycle.
    Djeliova V; Russev G; Anachkova B
    Nucleic Acids Res; 2001 Aug; 29(15):3181-7. PubMed ID: 11470875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative BrdU immunoprecipitation method demonstrates that Fkh1 and Fkh2 are rate-limiting activators of replication origins that reprogram replication timing in G1 phase.
    Peace JM; Villwock SK; Zeytounian JL; Gan Y; Aparicio OM
    Genome Res; 2016 Mar; 26(3):365-75. PubMed ID: 26728715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different groups of metabolic genes cluster around early and late firing origins of replication in budding yeast.
    Spiesser TW; Klipp E
    Genome Inform; 2010; 24():179-92. PubMed ID: 22081599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early initiation of a replication origin tethered at the nuclear periphery.
    Ebrahimi H; Robertson ED; Taddei A; Gasser SM; Donaldson AD; Hiraga S
    J Cell Sci; 2010 Apr; 123(Pt 7):1015-9. PubMed ID: 20197407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication.
    Aparicio OM; Stout AM; Bell SP
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):9130-5. PubMed ID: 10430907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.