BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 11266554)

  • 21. The SAGA HAT module is tethered by its SWIRM domain and modulates activity of the SAGA DUB module.
    Haile ST; Rahman S; Fields JK; Orsburn BC; Bumpus NN; Wolberger C
    Biochim Biophys Acta Gene Regul Mech; 2023 Jun; 1866(2):194929. PubMed ID: 36965704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and analysis of a Toxoplasma gondii histone acetyltransferase: a novel chromatin remodelling factor in Apicomplexan parasites.
    Hettmann C; Soldati D
    Nucleic Acids Res; 1999 Nov; 27(22):4344-52. PubMed ID: 10536141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator.
    Trievel RC; Rojas JR; Sterner DE; Venkataramani RN; Wang L; Zhou J; Allis CD; Berger SL; Marmorstein R
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8931-6. PubMed ID: 10430873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.
    Larschan E; Winston F
    Genes Dev; 2001 Aug; 15(15):1946-56. PubMed ID: 11485989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain.
    Wallberg AE; Neely KE; Gustafsson JA; Workman JL; Wright AP; Grant PA
    Mol Cell Biol; 1999 Sep; 19(9):5952-9. PubMed ID: 10454542
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and analysis of yeast nucleosomal histone acetyltransferase complexes.
    Eberharter A; John S; Grant PA; Utley RT; Workman JL
    Methods; 1998 Aug; 15(4):315-21. PubMed ID: 9740719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex.
    Nourani A; Doyon Y; Utley RT; Allard S; Lane WS; Côté J
    Mol Cell Biol; 2001 Nov; 21(22):7629-40. PubMed ID: 11604499
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes.
    Utley RT; Ikeda K; Grant PA; Côté J; Steger DJ; Eberharter A; John S; Workman JL
    Nature; 1998 Jul; 394(6692):498-502. PubMed ID: 9697775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3.
    Horiuchi J; Silverman N; Piña B; Marcus GA; Guarente L
    Mol Cell Biol; 1997 Jun; 17(6):3220-8. PubMed ID: 9154821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Gcn5.Ada complex potentiates the histone acetyltransferase activity of Gcn5.
    Syntichaki P; Thireos G
    J Biol Chem; 1998 Sep; 273(38):24414-9. PubMed ID: 9733731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB.
    Chiang YC; Komarnitsky P; Chase D; Denis CL
    J Biol Chem; 1996 Dec; 271(50):32359-65. PubMed ID: 8943299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon.
    Novillo F; Medina J; Salinas J
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):21002-7. PubMed ID: 18093929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic evidence for the interaction of the yeast transcriptional co-activator proteins GCN5 and ADA2.
    Georgakopoulos T; Gounalaki N; Thireos G
    Mol Gen Genet; 1995 Mar; 246(6):723-8. PubMed ID: 7898440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expanded lysine acetylation specificity of Gcn5 in native complexes.
    Grant PA; Eberharter A; John S; Cook RG; Turner BM; Workman JL
    J Biol Chem; 1999 Feb; 274(9):5895-900. PubMed ID: 10026213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation of putative plant transcriptional coactivators using a modified two-hybrid system incorporating a GFP reporter gene.
    Cormack RS; Hahlbrock K; Somssich IE
    Plant J; 1998 Jun; 14(6):685-92. PubMed ID: 9681033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant orthologs of p300/CBP: conservation of a core domain in metazoan p300/CBP acetyltransferase-related proteins.
    Bordoli L; Netsch M; Lüthi U; Lutz W; Eckner R
    Nucleic Acids Res; 2001 Feb; 29(3):589-97. PubMed ID: 11160878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recruitment of HAT complexes by direct activator interactions with the ATM-related Tra1 subunit.
    Brown CE; Howe L; Sousa K; Alley SC; Carrozza MJ; Tan S; Workman JL
    Science; 2001 Jun; 292(5525):2333-7. PubMed ID: 11423663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and functional analysis of yeast putative adaptors. Evidence for an adaptor complex in vivo.
    Candau R; Berger SL
    J Biol Chem; 1996 Mar; 271(9):5237-45. PubMed ID: 8617808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates.
    Xu W; Edmondson DG; Roth SY
    Mol Cell Biol; 1998 Oct; 18(10):5659-69. PubMed ID: 9742083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histone acetyltransferase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation.
    Wang L; Mizzen C; Ying C; Candau R; Barlev N; Brownell J; Allis CD; Berger SL
    Mol Cell Biol; 1997 Jan; 17(1):519-27. PubMed ID: 8972232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.