These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 11266608)

  • 1. TM Finder: a prediction program for transmembrane protein segments using a combination of hydrophobicity and nonpolar phase helicity scales.
    Deber CM; Wang C; Liu LP; Prior AS; Agrawal S; Muskat BL; Cuticchia AJ
    Protein Sci; 2001 Jan; 10(1):212-9. PubMed ID: 11266608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.
    Pilpel Y; Ben-Tal N; Lancet D
    J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?
    Park Y; Helms V
    Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. waveTM: wavelet-based transmembrane segment prediction.
    Pashou EE; Litou ZI; Liakopoulos TD; Hamodrakas SJ
    In Silico Biol; 2004; 4(2):127-31. PubMed ID: 15107018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics, stability, and prediction of transmembrane helices.
    Jayasinghe S; Hristova K; White SH
    J Mol Biol; 2001 Oct; 312(5):927-34. PubMed ID: 11580239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining hydrophobicity and helicity: a novel approach to membrane protein structure prediction.
    Liu LP; Deber CM
    Bioorg Med Chem; 1999 Jan; 7(1):1-7. PubMed ID: 10199651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An amino acid "transmembrane tendency" scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: relationship to biological hydrophobicity.
    Zhao G; London E
    Protein Sci; 2006 Aug; 15(8):1987-2001. PubMed ID: 16877712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A knowledge-based scale for amino acid membrane propensity.
    Punta M; Maritan A
    Proteins; 2003 Jan; 50(1):114-21. PubMed ID: 12471604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobicity and prediction of the secondary structure of membrane proteins and peptides.
    Klevanik AV
    Membr Cell Biol; 2001 Jul; 14(5):673-97. PubMed ID: 11699870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced recognition of protein transmembrane domains with prediction-based structural profiles.
    Cao B; Porollo A; Adamczak R; Jarrell M; Meller J
    Bioinformatics; 2006 Feb; 22(3):303-9. PubMed ID: 16293670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins.
    Beuming T; Weinstein H
    Bioinformatics; 2004 Aug; 20(12):1822-35. PubMed ID: 14988128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CoPreTHi: a Web tool which combines transmembrane protein segment prediction methods.
    Promponas VJ; Palaios GA; Pasquier CM; Hamodrakas JS; Hamodrakas SJ
    In Silico Biol; 1999; 1(3):159-62. PubMed ID: 11471236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane segment peptides with double D-amino acid replacements: helicity, hydrophobicity, and antimicrobial activity.
    Maeda M; Melnyk RA; Partridge AW; Liu LP; Deber CM
    Biopolymers; 2003; 71(1):77-84. PubMed ID: 12712502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
    Bagos PG; Liakopoulos TD; Hamodrakas SJ
    BMC Bioinformatics; 2005 Jan; 6():7. PubMed ID: 15647112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobicity and helicity of membrane-interactive peptides containing peptoid residues.
    Tang YC; Deber CM
    Biopolymers; 2002 Nov; 65(4):254-62. PubMed ID: 12382286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A sequence-based computational model for the prediction of the solvent accessible surface area for α-helix and β-barrel transmembrane residues.
    Wang C; Xi L; Li S; Liu H; Yao X
    J Comput Chem; 2012 Jan; 33(1):11-7. PubMed ID: 21935968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic Clusters Raise the Threshold Hydrophilicity for Insertion of Transmembrane Sequences in Vivo.
    Stone TA; Schiller N; Workewych N; von Heijne G; Deber CM
    Biochemistry; 2016 Oct; 55(40):5772-5779. PubMed ID: 27620701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PRALINETM: a strategy for improved multiple alignment of transmembrane proteins.
    Pirovano W; Feenstra KA; Heringa J
    Bioinformatics; 2008 Feb; 24(4):492-7. PubMed ID: 18174178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of polypeptide fragments exposed to the solvent.
    Carugo O
    In Silico Biol; 2003; 3(4):417-28. PubMed ID: 12954085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positions of polar amino acids alter interactions between transmembrane segments and detergents.
    Tulumello DV; Deber CM
    Biochemistry; 2011 May; 50(19):3928-35. PubMed ID: 21473646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.