BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 11266625)

  • 1. Role for cysteine residues in the in vivo folding and assembly of the phage P22 tailspike.
    Haase-Pettingell C; Betts S; Raso SW; Stuart L; Robinson A; King J
    Protein Sci; 2001 Feb; 10(2):397-410. PubMed ID: 11266625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stalled folding mutants in the triple beta-helix domain of the phage P22 tailspike adhesin.
    Weigele PR; Haase-Pettingell C; Campbell PG; Gossard DC; King J
    J Mol Biol; 2005 Dec; 354(5):1103-17. PubMed ID: 16289113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the protrimer intermediate in the folding pathway of the interdigitated beta-helix tailspike protein.
    Benton CB; King J; Clark PL
    Biochemistry; 2002 Apr; 41(16):5093-103. PubMed ID: 11955057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct cysteine sulfhydryl environments detected by analysis of Raman S-hh markers of Cys-->Ser mutant proteins.
    Raso SW; Clark PL; Haase-Pettingell C; King J; Thomas GJ
    J Mol Biol; 2001 Mar; 307(3):899-911. PubMed ID: 11273709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The interdigitated beta-helix domain of the P22 tailspike protein acts as a molecular clamp in trimer stabilization.
    Kreisberg JF; Betts SD; Haase-Pettingell C; King J
    Protein Sci; 2002 Apr; 11(4):820-30. PubMed ID: 11910025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulphide-bonded intermediate on the folding and assembly pathway of a non-disulphide bonded protein.
    Robinson AS; King J
    Nat Struct Biol; 1997 Jun; 4(6):450-5. PubMed ID: 9187652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein folding failure sets high-temperature limit on growth of phage P22 in Salmonella enterica serovar Typhimurium.
    Pope WH; Haase-Pettingell C; King J
    Appl Environ Microbiol; 2004 Aug; 70(8):4840-7. PubMed ID: 15294822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular trapping of a cytoplasmic folding intermediate of the phage P22 tailspike using iodoacetamide.
    Sather SK; King J
    J Biol Chem; 1994 Oct; 269(41):25268-76. PubMed ID: 7929218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural roles of subunit cysteines in the folding and assembly of the DNA packaging machine (portal) of bacteriophage P22.
    Rodríguez-Casado A; Thomas GJ
    Biochemistry; 2003 Apr; 42(12):3437-45. PubMed ID: 12653547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonnative interactions between cysteines direct productive assembly of P22 tailspike protein.
    Danek BL; Robinson AS
    Biophys J; 2003 Nov; 85(5):3237-47. PubMed ID: 14581223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P22 tailspike trimer assembly is governed by interchain redox associations.
    Danek BL; Robinson AS
    Biochim Biophys Acta; 2004 Jul; 1700(1):105-16. PubMed ID: 15210130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phage P22 tailspike protein: removal of head-binding domain unmasks effects of folding mutations on native-state thermal stability.
    Miller S; Schuler B; Seckler R
    Protein Sci; 1998 Oct; 7(10):2223-32. PubMed ID: 9792111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations that stabilize folding intermediates of phage P22 tailspike protein: folding in vivo and in vitro, stability, and structural context.
    Beissinger M; Lee SC; Steinbacher S; Reinemer P; Huber R; Yu MH; Seckler R
    J Mol Biol; 1995 May; 249(1):185-94. PubMed ID: 7776371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An elongated spine of buried core residues necessary for in vivo folding of the parallel beta-helix of P22 tailspike adhesin.
    Simkovsky R; King J
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3575-80. PubMed ID: 16505375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-terminal cysteine annulus participates in auto-chaperone function for Salmonella phage P22 tailspike folding and assembly.
    Takata T; Haase-Pettingell C; King J
    Bacteriophage; 2012 Jan; 2(1):36-49. PubMed ID: 22666655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure dissociation studies provide insight into oligomerization competence of temperature-sensitive folding mutants of P22 tailspike.
    Lefebvre BG; Comolli NK; Gage MJ; Robinson AS
    Protein Sci; 2004 Jun; 13(6):1538-46. PubMed ID: 15133163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold rescue of the thermolabile tailspike intermediate at the junction between productive folding and off-pathway aggregation.
    Betts SD; King J
    Protein Sci; 1998 Jul; 7(7):1516-23. PubMed ID: 9684883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding and assembly of phage P22 tailspike endorhamnosidase lacking the N-terminal, head-binding domain.
    Danner M; Fuchs A; Miller S; Seckler R
    Eur J Biochem; 1993 Aug; 215(3):653-61. PubMed ID: 8354271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity and steric strain in a parallel beta-helix: rational mutations in the P22 tailspike protein.
    Schuler B; Fürst F; Osterroth F; Steinbacher S; Huber R; Seckler R
    Proteins; 2000 Apr; 39(1):89-101. PubMed ID: 10737931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genetic analysis of an important hydrophobic interaction at the P22 tailspike protein N-terminal domain.
    Williams J; Venkatesan K; Ayariga JA; Jackson D; Wu H; Villafane R
    Arch Virol; 2018 Jun; 163(6):1623-1633. PubMed ID: 29500571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.