These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11266680)

  • 1. A minimally disruptive technique for measuring intervertebral disc pressure in vitro: application to the cervical spine.
    Cripton PA; Dumas GA; Nolte LP
    J Biomech; 2001 Apr; 34(4):545-9. PubMed ID: 11266680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The rib cage reduces intervertebral disc pressures in cadaveric thoracic spines by sharing loading under applied dynamic moments.
    Anderson DE; Mannen EM; Tromp R; Wong BM; Sis HL; Cadel ES; Friis EA; Bouxsein ML
    J Biomech; 2018 Mar; 70():262-266. PubMed ID: 29106896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Intradiscal pressure forces on cervical intervertebral discs in physiologic and pathologic conditions. In vitro study].
    Pospiech J; Wilke HJ; Claes LE; Stolke D
    Langenbecks Arch Chir; 1996; 381(6):303-8. PubMed ID: 9082102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intradiscal pressure recordings in the cervical spine.
    Pospiech J; Stolke D; Wilke HJ; Claes LE
    Neurosurgery; 1999 Feb; 44(2):379-84; discussion 384-5. PubMed ID: 9932892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion.
    Eck JC; Humphreys SC; Lim TH; Jeong ST; Kim JG; Hodges SD; An HS
    Spine (Phila Pa 1976); 2002 Nov; 27(22):2431-4. PubMed ID: 12435970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The facet joint loading profile of a cervical intervertebral disc replacement incorporating a novel saddle-shaped articulation.
    Stieber JR; Quirno M; Kang M; Valdevit A; Errico TJ
    J Spinal Disord Tech; 2011 Oct; 24(7):432-6. PubMed ID: 21336178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evaluation of a ball-and-socket cervical disc prosthesis with cranial geometric center.
    Barrey C; Mosnier T; Jund J; Perrin G; Skalli W
    J Neurosurg Spine; 2009 Nov; 11(5):538-46. PubMed ID: 19929355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis.
    Cunningham BW; Kotani Y; McNulty PS; Cappuccino A; McAfee PC
    Spine (Phila Pa 1976); 1997 Nov; 22(22):2655-63. PubMed ID: 9399452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical analysis of C4-C6 spine segment considering anisotropy of annulus fibrosus.
    Wang Y; Peng X; Guo Z
    Biomed Tech (Berl); 2013 Aug; 58(4):343-51. PubMed ID: 23924518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of follower load application on moment-rotation parameters and intradiscal pressure in the cervical spine.
    Bell KM; Yan Y; Hartman RA; Lee JY
    J Biomech; 2018 Jul; 76():167-172. PubMed ID: 29929892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model.
    Dmitriev AE; Cunningham BW; Hu N; Sell G; Vigna F; McAfee PC
    Spine (Phila Pa 1976); 2005 May; 30(10):1165-72. PubMed ID: 15897831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis.
    Pollintine P; van Tunen MS; Luo J; Brown MD; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2010 Feb; 35(4):386-94. PubMed ID: 20110846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How Osmoviscoelastic Coupling Affects Recovery of Cyclically Compressed Intervertebral Disc.
    Feki F; Taktak R; Kandil K; Derrouiche A; Moulart M; Haddar N; Zaïri F; Zaïri F
    Spine (Phila Pa 1976); 2020 Nov; 45(21):E1376-E1385. PubMed ID: 33031252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of an interspinous implant on intervertebral disc pressures.
    Swanson KE; Lindsey DP; Hsu KY; Zucherman JF; Yerby SA
    Spine (Phila Pa 1976); 2003 Jan; 28(1):26-32. PubMed ID: 12544951
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro animal study of the biomechanical responses of anulus fibrosus with aging.
    Park C; Kim YJ; Lee CS; An K; Shin HJ; Lee CH; Kim CH; Shin JW
    Spine (Phila Pa 1976); 2005 May; 30(10):E259-65. PubMed ID: 15897815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro disc pressure profiles below scoliosis fusion constructs.
    Buttermann GR; Beaubien BP
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2134-42. PubMed ID: 18794754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of pressures in the nucleus and within the annulus of the human spinal disc: due to extreme loading.
    Ranu HS
    Proc Inst Mech Eng H; 1990; 204(3):141-6. PubMed ID: 2133780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of nucleotomy on lumbar spine mechanics in compression and shear loading.
    Frei H; Oxland TR; Rathonyi GC; Nolte LP
    Spine (Phila Pa 1976); 2001 Oct; 26(19):2080-9. PubMed ID: 11698883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.