These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 11267836)

  • 1. Repair bias of large loop mismatches during recombination in mammalian cells depends on loop length and structure.
    Bill CA; Taghian DG; Duran WA; Nickoloff JA
    Mutat Res; 2001 Apr; 485(3):255-65. PubMed ID: 11267836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of palindromic loop mismatch repair tracts in mammalian cells.
    Miller CA; Bill CA; Nickoloff JA
    DNA Repair (Amst); 2004 Apr; 3(4):421-8. PubMed ID: 15010318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biased short tract repair of palindromic loop mismatches in mammalian cells.
    Taghian DG; Hough H; Nickoloff JA
    Genetics; 1998 Mar; 148(3):1257-68. PubMed ID: 9539440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient repair of all types of single-base mismatches in recombination intermediates in Chinese hamster ovary cells. Competition between long-patch and G-T glycosylase-mediated repair of G-T mismatches.
    Bill CA; Duran WA; Miselis NR; Nickoloff JA
    Genetics; 1998 Aug; 149(4):1935-43. PubMed ID: 9691048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mismatch repair by efficient nick-directed, and less efficient mismatch-specific, mechanisms in homologous recombination intermediates in Chinese hamster ovary cells.
    Miller EM; Hough HL; Cho JW; Nickoloff JA
    Genetics; 1997 Oct; 147(2):743-53. PubMed ID: 9335609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mismatch repair of heteroduplex DNA intermediates of extrachromosomal recombination in mammalian cells.
    Deng WP; Nickoloff JA
    Mol Cell Biol; 1994 Jan; 14(1):400-6. PubMed ID: 8264607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nick-directed repair of palindromic loop mismatches in human cell extracts.
    Chuang YK; Cheng WC; Goodman SD; Chang YT; Kao JT; Lee CN; Tsai KS; Fang WH
    J Biomed Sci; 2005; 12(4):659-69. PubMed ID: 16078003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The large loop repair and mismatch repair pathways of Saccharomyces cerevisiae act on distinct substrates during meiosis.
    Jensen LE; Jauert PA; Kirkpatrick DT
    Genetics; 2005 Jul; 170(3):1033-43. PubMed ID: 15879514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient repair of large DNA loops in Saccharomyces cerevisiae.
    Corrette-Bennett SE; Mohlman NL; Rosado Z; Miret JJ; Hess PM; Parker BO; Lahue RS
    Nucleic Acids Res; 2001 Oct; 29(20):4134-43. PubMed ID: 11600702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Marker structure and recombination substrate environment influence conversion preference of broken and unbroken alleles in Saccharomyces cerevisiae.
    Weng Y; Barton SL; Cho JW; Nickoloff JA
    Mol Genet Genomics; 2001 May; 265(3):461-8. PubMed ID: 11405629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of nick-directed DNA mismatch repair and loop repair in human cells.
    Huang YM; Chen SU; Goodman SD; Wu SH; Kao JT; Lee CN; Cheng WC; Tsai KS; Fang WH
    J Biol Chem; 2004 Jul; 279(29):30228-35. PubMed ID: 15151992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the proteins involved in the in vivo repair of base-base mismatches and four-base loops formed during meiotic recombination in the yeast Saccharomyces cerevisiae.
    Stone JE; Petes TD
    Genetics; 2006 Jul; 173(3):1223-39. PubMed ID: 16702432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large non-homology in heteroduplex DNA is processed differently than single base pair mismatches.
    Dohet C; Dzidić S; Wagner R; Radman M
    Mol Gen Genet; 1987 Jan; 206(1):181-4. PubMed ID: 3472034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA repair and chromosomal alterations.
    Natarajan AT; Palitti F
    Mutat Res; 2008 Nov; 657(1):3-7. PubMed ID: 18801460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distance and affinity dependence of triplex-induced recombination.
    Knauert MP; Lloyd JA; Rogers FA; Datta HJ; Bennett ML; Weeks DL; Glazer PM
    Biochemistry; 2005 Mar; 44(10):3856-64. PubMed ID: 15751961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nicks on repair of single-stranded loops in heteroduplex DNA in mammalian cells.
    Weiss U; Wilson JH
    Somat Cell Mol Genet; 1989 Jan; 15(1):13-8. PubMed ID: 2536961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells.
    Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D
    Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mismatch repair in recombination of bacteriophage T4.
    Shcherbakov VP
    Biomol Concepts; 2012 Dec; 3(6):523-34. PubMed ID: 25436556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation.
    Frankenberg-Schwager M; Gebauer A; Koppe C; Wolf H; Pralle E; Frankenberg D
    Radiat Res; 2009 Mar; 171(3):265-73. PubMed ID: 19267553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-stranded DNA gaps, tails and loops are repaired in Escherichia coli.
    Campbell CR; Ayares D; Watkins K; Wolski R; Kucherlapati R
    Mutat Res; 1989 Mar; 211(1):181-8. PubMed ID: 2646531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.